(本題滿分11分)在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c,已知c=2,C=
.
(1)若△ABC的面積等于
,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面積.
(1)a=2,b=2.(2)S=
absinC=
.
解析試題分析:(1)由余弦定理及已知條件得,a2+b2-ab=4,…………2分
又因?yàn)椤鰽BC的面積等于
,所以
absinC=
,得ab=4.…………4分
聯(lián)立方程組
解得a=2,b=2.…………5分
(2)由題意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA,…………7分
當(dāng)cosA=0時(shí),A=
,B=
,a=
,b=
,…………8分
當(dāng)cosA≠0時(shí),得sinB=2sinA,由正弦定理得b=2a,聯(lián)立方程組![]()
解得a=
,b=
.…………10分
所以△ABC的面積S=
absinC=
.…………11分
考點(diǎn):本題主要考查正弦定理、余弦定理的應(yīng)用,三角形內(nèi)角和定理,兩角和差的三角函數(shù)。
點(diǎn)評(píng):典型題,本題在考查正弦定理、余弦定理的應(yīng)用,三角形內(nèi)角和定理,兩角和差的三角函數(shù)的同時(shí),考查了函數(shù)方程思想,在兩道小題中,均通過(guò)建立方程組,以便求的a,b,c等。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在
中,角
所對(duì)的邊分別為
,且滿足
.
(1)求角
的大;
(2)求
的最大值,并求取得最大值時(shí)角
的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
若a、b、c是△ABC三個(gè)內(nèi)角A、B、C所對(duì)邊,且![]()
(1)求![]()
(2)當(dāng)
時(shí),求
的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)
已知
分別是
的三個(gè)內(nèi)角
的對(duì)邊,
.
(Ⅰ)求角
的大小;
(Ⅱ)求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某興趣小組測(cè)量電視塔AE的高度H(單位:m),如示意圖,垂直放置的標(biāo)桿BC的高度h=4m,仰角∠ABE=
,∠ADE=
。![]()
(1) 該小組已經(jīng)測(cè)得一組
、
的值,tan
=1.24,tan
=1.20,請(qǐng)據(jù)此算出H的值;
(2) 該小組分析若干測(cè)得的數(shù)據(jù)后,認(rèn)為適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位:m),使
與
之差較大,可以提高測(cè)量精確度。若電視塔的實(shí)際高度為125m,試問(wèn)d為多少時(shí),![]()
![]()
最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
,其中![]()
(1)求函數(shù)
在區(qū)間
上的值域
(2)在
中,
,
,
分別是角
的對(duì)邊,
,且
,
的面積
,求邊
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com