(本題滿分12分)如圖,在平面直坐標(biāo)系
中,已知橢圓
,經(jīng)過點(diǎn)
,其中e為橢圓的離心率.且橢圓
與直線
有且只有一個(gè)交點(diǎn)。![]()
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)不經(jīng)過原點(diǎn)的直線
與橢圓
相交與A,B兩點(diǎn),第一象限內(nèi)的點(diǎn)
在橢圓上,直線
平分線段
,求:當(dāng)
的面積取得最大值時(shí)直線
的方程。
(Ⅰ)
;(Ⅱ)
。
解析試題分析:(Ⅰ)∵橢圓經(jīng)過點(diǎn)
,∴
又
,
∴
,∴
∴橢圓的方程為
…………………………………………2分
又∵橢圓
與直線
有且只有一個(gè)交點(diǎn)
∴方程
即
有相等實(shí)根
∴
∴
∴橢圓的方程為
………………………………………………5分
(Ⅱ)由(Ⅰ)知橢圓的方程為
故![]()
設(shè)不經(jīng)過原點(diǎn)的直線
的方程
交橢圓
于![]()
由
得
……………………………6分
∴
………………7分 ![]()
直線
方程為
且
平分線段
∴
=![]()
解得
……………………………………………8分
∴![]()
又∵點(diǎn)
到直線
的距離
∴
…………………………………………9分
設(shè)
由直線
與橢圓
相交于A,B兩點(diǎn)可得![]()
求導(dǎo)可得![]()
![]()
,此時(shí)
取得最大值
此時(shí)直線
的方程
……………………………………………12分
考點(diǎn):本題主要考查橢圓標(biāo)準(zhǔn)方程,橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,直線方程,點(diǎn)到直線的距離。
點(diǎn)評(píng):求橢圓的標(biāo)準(zhǔn)方程是解析幾何的基本問題,涉及直線與橢圓的位置關(guān)系問題,常常運(yùn)用韋達(dá)定理,本題屬于中檔題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知?jiǎng)訄AP(圓心為點(diǎn)P)過定點(diǎn)A(1,0),且與直線
相切。記動(dòng)點(diǎn)P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點(diǎn)P的直線l與曲線C相切,且與直線
相交于點(diǎn)Q。試研究:在x軸上是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的頂點(diǎn)與雙曲線
的焦點(diǎn)重合,它們的離心率之和為
,若橢圓的焦點(diǎn)在
軸上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.已知雙曲線的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,一條漸近線方程為
,右焦點(diǎn)
,雙曲線的實(shí)軸為
,
為雙曲線上一點(diǎn)(不同于
),直線
,
分別與直線
交于
兩點(diǎn)
(1)求雙曲線的方程;
(2)
是否為定值,若為定值,求出該值;若不為定值,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某海域有
、
兩個(gè)島嶼,
島在
島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線是曲線
,曾有漁船在距
島、
島距離和為8海里處發(fā)現(xiàn)過魚群。以
、
所在直線為
軸,
的垂直平分線為
軸建立平面直角坐標(biāo)系。![]()
(1)求曲線
的標(biāo)準(zhǔn)方程;(6分)
(2)某日,研究人員在
、
兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),
、
兩島收到魚群在
處反射信號(hào)的時(shí)間比為
,問你能否確定
處的位置(即點(diǎn)
的坐標(biāo))?(8分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知橢圓
經(jīng)過點(diǎn)
,且其右焦點(diǎn)與拋物線
的焦點(diǎn)F重合.
(Ⅰ)求橢圓
的方程;
(II)直線
經(jīng)過點(diǎn)
與橢圓
相交于A、B兩點(diǎn),與拋物線
相交于C、D兩點(diǎn).求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心是坐標(biāo)原點(diǎn)
,焦點(diǎn)在x軸上,離心率為
,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為
,過點(diǎn)M(0,
)與x軸不垂直的直線
交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知橢圓
過點(diǎn)
,且離心率為
.
(1)求橢圓
的方程;
(2)
為橢圓
的左右頂點(diǎn),點(diǎn)
是橢圓
上異于
的動(dòng)點(diǎn),直線
分別交直線
于
兩點(diǎn).
證明:以線段
為直徑的圓恒過
軸上的定點(diǎn).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com