(本題滿分14分)
已知函數(shù)f(x)=lnx+![]()
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)m
R,對(duì)任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2
n>
∈N*).
(Ⅰ)函數(shù)
的單調(diào)遞減區(qū)間是
.
(Ⅱ)
的取值范圍是
.
(Ⅲ)見解析。
【解析】
試題分析:(Ⅰ)
.
令
,得
,因此函數(shù)
的單調(diào)遞增區(qū)間是
.
令
,得
,因此函數(shù)
的單調(diào)遞減區(qū)間是
.…………(4分)
(Ⅱ)依題意,
.
由(Ⅰ)知,
在
上是增函數(shù),
.
![]()
,即
對(duì)于任意的
恒成立.
解得
.
所以,
的取值范圍是
.
…………………………(8分)
(Ⅲ)由(Ⅰ)
,
,
.
![]()
.
即
.
又,![]()
![]()
![]()
![]()
.
.
由柯西不等式,
.
.
. ……………………(14分)
考點(diǎn):本題主要考查了導(dǎo)數(shù)的運(yùn)算和導(dǎo)數(shù)在函數(shù)單調(diào)性中的應(yīng)用, 柯西不等式的應(yīng)用。
點(diǎn)評(píng):較難題,利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的方法,解題時(shí)注意函數(shù)的定義域,避免出錯(cuò)
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,
為
上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若A
CRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)
是⊙
:
上的任意一點(diǎn),過
作
垂直
軸于
,動(dòng)點(diǎn)
滿足
。
(1)求動(dòng)點(diǎn)
的軌跡方程;
(2)已知點(diǎn)
,在動(dòng)點(diǎn)
的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)
、
,使
(O是坐標(biāo)原點(diǎn)),若存在,求出直線
的方程,若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù)
.
(1)求函數(shù)
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有根?如果有根
,請(qǐng)求出一個(gè)長(zhǎng)度為
的區(qū)間
,使![]()
![]()
;如果沒有,請(qǐng)說明理由?(注:區(qū)間的長(zhǎng)度為
).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com