【題目】如圖,在四棱錐
平面ABCD,
,E為PD的中點(diǎn),F在AD上且
.
![]()
(1)求證:CE//平面PAB;
(2)若PA=2AB=2,求四面體PACE的體積.
【答案】(1)見解析;(2)![]()
【解析】
試題(1)∵∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,
∴∠FDC=30°.又∠FCD=30°,∴∠ACF=60°,
∴AF=CF=DF,F為AD的中點(diǎn). 3分
又E為PD的中點(diǎn),∴EF∥PA.
AP
平面PAB,∴EF∥平面PAB.
又∠BAC=∠ACF=60°.
∴CF∥AB,可得CF∥平面PAB.
又EF∩CF=F,
∴平面CEF∥平面PAB,而CE
平面CEF.
∴CE∥平面PAB. 6分
(2)∵EF∥AP,∴EF∥平面APC.
又∠ABC=∠ACD=90°.∠BAC=60°.PA=2AB=2.
∴AC=2AB=2,
. 9分
∴![]()
. 12分
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為
(
,a為常數(shù))),過(guò)點(diǎn)
、傾斜角為
的直線
的參數(shù)方程滿足
,(
為參數(shù)).
(1)求曲線C的普通方程和直線
的參數(shù)方程;
(2)若直線
與曲線C相交于A、B兩點(diǎn)(點(diǎn)P在A、B之間),且
,求
和
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
.
(1)討論函數(shù)
的極值;
(2)若
為整數(shù),
,且
,不等式
成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓
的參數(shù)方程為
(其中
為參數(shù)),以原點(diǎn)為極點(diǎn),
軸非負(fù)半軸為極軸建立極坐標(biāo)系,則曲線
的極坐標(biāo)方程為
.
(1)求圓
的普通方程與
的直角坐標(biāo)方程;
(2)點(diǎn)
是曲線
上一點(diǎn),由
向圓
引切線,切點(diǎn)分別為
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱
中,
,
是
的中點(diǎn),
.
![]()
(1)求證:
平面
;
(2)若異面直線
和
所成角的余弦值為
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人某天的工作是駕車從
地出發(fā),到
兩地辦事,最后返回
地,
,三地之間各路段行駛時(shí)間及擁堵概率如下表
路段 | 正常行駛所用時(shí)間(小時(shí)) | 上午擁堵概率 | 下午擁堵概率 |
| 1 | 0.3 | 0.6 |
| 2 | 0.2 | 0.7 |
| 3 | 0.3 | 0.9 |
若在某路段遇到擁堵,則在該路段行駛時(shí)間需要延長(zhǎng)1小時(shí).
現(xiàn)有如下兩個(gè)方案:
方案甲:上午從
地出發(fā)到
地辦事然后到達(dá)
地,下午從
地辦事后返回
地;
方案乙:上午從
地出發(fā)到![]()
地出發(fā)到達(dá)
地,辦完事后返回
地.
(1)若此人早上8點(diǎn)從
地出發(fā),在各地辦事及午餐的累積時(shí)間為2小時(shí),且采用方案甲,求他當(dāng)日18點(diǎn)或18點(diǎn)之前能返回
地的概率.
(2)甲乙兩個(gè)方案中,哪個(gè)方案有利于辦完事后更早返回
地?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
=lnx+ax2+(2a+1)x.
(1)討論
的單調(diào)性;
(2)當(dāng)a﹤0時(shí),證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(1)求
單調(diào)區(qū)間與極值;
(2)當(dāng)函數(shù)
有兩個(gè)極值點(diǎn)時(shí),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2
,BC=6.
(1)求證:BD⊥平面PAC; (2)求二面角P-BD-A的大小.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com