如圖,橢圓
的左頂點(diǎn)為
,
是橢圓
上異于點(diǎn)
的任意一點(diǎn),點(diǎn)
與點(diǎn)
關(guān)于點(diǎn)
對稱.![]()
(1)若點(diǎn)
的坐標(biāo)為
,求
的值;
(2)若橢圓
上存在點(diǎn)
,使得
,求
的取值范圍.
(1)
;(2)
.
解析試題分析:(1)根據(jù)中點(diǎn)坐標(biāo)公式求出
坐標(biāo),代入橢圓方程解得
;(2)設(shè)出
坐標(biāo)(注意其橫坐標(biāo)的取值范圍),利用中點(diǎn)坐標(biāo)公式求出點(diǎn)
坐標(biāo),然后利用垂直時(shí)數(shù)量積為零列出關(guān)系式,結(jié)合基本不等式求解.
試題解析:(1)依題意,
是線段
的中點(diǎn)![]()
點(diǎn)
的坐標(biāo)是
. 2分
由點(diǎn)
在橢圓
上,
4分
5分
(2)設(shè)
① 6分![]()
是線段
的中點(diǎn) ![]()
② 8分
由①,②消去
,整理得
10分
12分
當(dāng)且僅當(dāng)
時(shí),上式等號(hào)成立
13分
考點(diǎn):1.橢圓方程;2.向量數(shù)量積;3.基本不等式.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知A(-5,0),B(5,0),動(dòng)點(diǎn)P滿足|
|,
|
|,8成等差數(shù)列.
(1)求P點(diǎn)的軌跡方程;
(2)對于x軸上的點(diǎn)M,若滿足|
|·|
|=
,則稱點(diǎn)M為點(diǎn)P對應(yīng)的“比例點(diǎn)”.問:對任意一個(gè)確定的點(diǎn)P,它總能對應(yīng)幾個(gè)“比例點(diǎn)”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
過點(diǎn)
,離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點(diǎn)
且斜率為
(
)的直線
與橢圓
相交于
兩點(diǎn),直線
、
分別交直線
于
、
兩點(diǎn),線段
的中點(diǎn)為
.記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC中, 點(diǎn)A,B的坐標(biāo)分別為A(-
,0),B(
,0)點(diǎn)C在x軸上方.
(Ⅰ)若點(diǎn)C坐標(biāo)為(
,1),求以A,B為焦點(diǎn)且經(jīng)過點(diǎn)C的橢圓的方程:
(Ⅱ)過點(diǎn)P(m,0)作傾斜角為
的直線l交(1)中曲線于M,N兩點(diǎn),若點(diǎn)Q(1,0)恰在以線段MN為直徑的圓上,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
的焦點(diǎn)為F
過點(diǎn)
的直線交拋物線于A
,B
兩點(diǎn),直線AF,BF分別與拋物線交于點(diǎn)M,N ![]()
(1)求
的值;
(2)記直線MN的斜率為
,直線AB的斜率為
證明:
為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線
焦點(diǎn)為
,直線
經(jīng)過點(diǎn)
且與拋物線
相交于
,
兩點(diǎn) ![]()
(Ⅰ)若線段
的中點(diǎn)在直線
上,求直線
的方程;
(Ⅱ)若線段
,求直線
的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,焦距為
,且經(jīng)過點(diǎn)
,直線
交橢圓于不同的兩點(diǎn)A,B.
(1)求
的取值范圍;,
(2)若直線
不經(jīng)過點(diǎn)
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,橢圓C過點(diǎn)
,兩個(gè)焦點(diǎn)為
.
(1)求橢圓C的方程;
(2)
是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線
的斜率與
的斜率互為相反數(shù),證明直線
的斜率為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,已知橢圓
的左焦點(diǎn)為
,且橢圓
的離心率
.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的上下頂點(diǎn)分別為
,
是橢圓
上異于
的任一點(diǎn),直線
分別交
軸于點(diǎn)
,證明:
為定值,并求出該定值;
(3)在橢圓
上,是否存在點(diǎn)
,使得直線
與圓
相交于不同的兩點(diǎn)
,且
的面積最大?若存在,求出點(diǎn)
的坐標(biāo)及對應(yīng)的
的面積;若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com