函數(shù)f(x)=
+
(x∈[a,b]a<b)的值域是
.
考點(diǎn):函數(shù)的值域
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由基本不等式可得[
(
+
)]
2≤
=
,從而得到
+
≤
,再由
+
≥
求出函數(shù)f(x)的值域.
解答:
解:∵[
(
+
)]
2≤
=
,
∴
+
≤
,
又∵
+
≥
,
則函數(shù)f(x)=
+
(x∈[a,b]a<b)的值域是[
,
].
故答案為:[
,
].
點(diǎn)評(píng):本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知x>y>2,且x+y,x-y,xy,
能依某種順序構(gòu)成等比數(shù)列,試求此等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{a
n},前n項(xiàng)和為S
n,若a
n+1>a
n>0,且滿(mǎn)足S
n=
(a
n2+n-1).
(Ⅰ)求數(shù)列{a
n}的通項(xiàng)公式;
(Ⅱ)數(shù)列{b
n}滿(mǎn)足b
n=
+
,求數(shù)列{b
n}的前n項(xiàng)和T
n;
(Ⅲ)設(shè)c
n=2
n(
-λ),若數(shù)列{c
n}是單調(diào)遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
為得到函數(shù)y=cosx的圖象,可以把y=sinx的圖象向右平移φ個(gè)單位得到,則φ的最小正值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知兩個(gè)命題p:關(guān)于x方程求(a2-4)x2+(a+2)x-1≥0的解集為∅,q:方程x2+x+a=0有一正根一負(fù)根,若¬p是假命題,p∧q為假命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知數(shù)列{an}的前n項(xiàng)和Sn,滿(mǎn)足an+Sn=2n(n∈N*),記bn=2-an.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求數(shù)列{bn}的前n項(xiàng)和Bn;
(2)求b1(Bn-b1)+b2(Bn-b2)+bn-1(Bn-bn-1)(n≥2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
關(guān)于x的二次方程x2+(m-1)x+1=0.
(1)一個(gè)根在(0,1)之間,另一個(gè)根在(3,4)之間,求實(shí)數(shù)m的取值范圍;
(2)在區(qū)間[0,2]上有解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:
題型:
已知函數(shù)f(x)=
,函數(shù)f(x)為奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)判斷f(x)的單調(diào)性,并用定義證明;
(3)若對(duì)任意t∈[-1,0],不等式f(t
2-2t-1)+f(2t
2-k)≤0恒成立,求k的取值范圍.
查看答案和解析>>