【題目】已知橢圓
的離心率為
,且橢圓上的點到焦點的最長距離為
.
(1)求橢圓C的方程;
(2)過點P(0,2)的直線l(不過原點O)與橢圓C交于兩點A、B,M為線段AB的中點.
(。┳C明:直線OM與l的斜率乘積為定值;
(ⅱ)求△OAB面積的最大值及此時l的斜率.
【答案】(1)
;(2)(ⅰ)詳見解析;(ⅱ)△AOB面積的最大值是
,此時l的斜率為±
.
【解析】
(1)由題意得
,解得即可求出方程,
(2)(i)設(shè)直線l為:y=kx+2,根據(jù)韋達定理和斜率公式即可求出,
(ii)先根據(jù)弦長公式求出|AB|及原點到直線的距離,再令
=t,表示出三角形的面積,利用基本不等式即可求出.
解:(1)由題意得
,解得
,
∴a2=2,b2=a2-c2=1,
∴橢圓C的方程為
;
(2)(。┰O(shè)直線l為:y=kx+2,A(x1,y1),B(x2,y2),M(xM,yM),
由題意得
,∴(1+2k2)x2+8kx+6=0,
∴△=8(2k2-3)>0,即
,
由韋達定理得:x1+x2=-
,x1x2=
,
∴
,
,
∴
,∴
,
∴直線OM與l的斜率乘積為定值.
(ⅱ)由(。┛芍
,
原點到直線AB的距離為![]()
令
=t,則t>0,
∴S△AOB=
=
≤
=
,
當(dāng)且僅當(dāng)t=2時等號成立,此時k=±
,且滿足△>0,
∴△AOB面積的最大值是
,此時l的斜率為±
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】集合
,對于正整數(shù)m,集合S的任一m元子集中必有一個數(shù)為另外m-1個數(shù)乘積的約數(shù).則m的最小可能值為__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤
(a>0)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知矩形ABCD滿足AB=5,
,沿平行于AD的線段EF向上翻折(點E在線段AB上運動,點F在線段CD上運動),得到如圖②所示的三棱柱
.
![]()
⑴若圖②中△ABG是直角三角形,這里G是線段EF上的點,試求線段EG的長度x的取值范圍;
⑵若⑴中EG的長度為取值范圍內(nèi)的最大整數(shù),且線段AB的長度取得最小值,求二面角
的值;
⑶在⑴與⑵的條件都滿足的情況下,求三棱錐A-BFG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形CDEF中,四邊形ABCD為正方形,且
,將
沿著線段AD折起,同時將
沿著線段BC折起,使得E,F兩點重合為點P.
求證:平面
平面ABCD;
求直線PB與平面PCD的所成角的正弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.
參考公式:
,其中
.
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)
滿足
,現(xiàn)給出下列命題:①函數(shù)
是以2為周期的周期函數(shù);②函數(shù)
是以4為周期的周期函數(shù);③函數(shù)
為奇函數(shù);④函數(shù)
為偶函數(shù),則其中真命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知偶函數(shù)
滿足
,現(xiàn)給出下列命題:①函數(shù)
是以2為周期的周期函數(shù);②函數(shù)
是以4為周期的周期函數(shù);③函數(shù)
為奇函數(shù);④函數(shù)
為偶函數(shù),則其中真命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形
中,
為
的中點,將
沿直線
翻折成
,連結(jié)
,
為
的中點,則在翻折過程中,下列說法中所有正確的序號是_______.
①存在某個位置,使得
;
②翻折過程中,
的長是定值;
③若
,則
;
④若
,當(dāng)三棱錐
的體積最大時,三棱錐
的外接球的表面積是
.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com