【題目】已知定義在
上的函數(shù)
.
(1)求
單調(diào)區(qū)間;
(2)當
時,
在
上有三個零點,求
的取值范圍.
【答案】(1)答案不唯一,具體見解析(2)![]()
【解析】
對函數(shù)
求導(dǎo)可得,
,分
,
,
三種情況討論利用導(dǎo)數(shù)
判斷函數(shù)
的單調(diào)性求單調(diào)區(qū)間即可;
令
,把函數(shù)
在
上有三個零點轉(zhuǎn)化為函數(shù)
的圖象與直線
在
上有三個不同的交點,通過對函數(shù)
進行求導(dǎo)判斷其單調(diào)性并求極值,得到關(guān)于
的不等式,解不等式即可.
由題意知,
,
令
得
或
,
當
時,
恒成立,
函數(shù)
的單調(diào)增區(qū)間為
;
當
時由
,得
或
;由
,得
;
函數(shù)
的單調(diào)減區(qū)間為
,單調(diào)增區(qū)間為
,
;
當
時由
,得
或
;由
,得
;
函數(shù)
的單調(diào)減區(qū)間為
,單調(diào)增區(qū)間為
,
;
綜上可知,當
時,函數(shù)
的單調(diào)增區(qū)間為
;
當
時函數(shù)
的單調(diào)減區(qū)間為
,單調(diào)增區(qū)間為
,
;
當
時函數(shù)
的單調(diào)減區(qū)間為
,單調(diào)增區(qū)間為
,
;
令
,則
,
則
,令
,解得
,
當
時,
;當
或
時,
,
函數(shù)
在
和
上單調(diào)遞增,在
上單調(diào)遞減,
所以當
時,函數(shù)
有極大值為
,
當
時,函數(shù)
有極小值為
,
使函數(shù)
在
上有三個零點,
即直線
和函數(shù)
有三個不同的交點,
由
單調(diào)性,只需滿足
,
即
,解得
,
所以實數(shù)
的取值范圍是
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著手機的發(fā)展,“微信”逐漸成為人們交流的一種形式.某機構(gòu)對“使用微信交流”的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡 (單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(1)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關(guān);
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(2)若從年齡在[55,65)的被調(diào)查人中隨機選取2人進行追蹤調(diào)查,求2人中至少有1人不贊成“使用微信交流”的概率.
參考數(shù)據(jù):
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2=
,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在給出的下列命題中,正確的是( )
A.設(shè)
是同一平面上的四個點,若
,則點
必共線
B.若向量
是平面
上的兩個向量,則平面
上的任一向量
都可以表示為
,且表示方法是唯一的
C.已知平面向量
滿足
則
為等腰三角形
D.已知平面向量
滿足
,且
,則
是等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求出函數(shù)
的單調(diào)區(qū)間及最大值;
(2)若
且
,求函數(shù)
在
上的最大值
的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,則下列結(jié)論正確的個數(shù)有( )
①
是函數(shù)
圖像的一條對稱軸
②
是函數(shù)
圖像的一個對稱中心
③將函數(shù)
圖像向右平移
單位所得圖像的解析式為得![]()
④函數(shù)
在區(qū)間
內(nèi)單調(diào)遞增
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為
(
),M為該曲線上的任意一點.
![]()
(1)當
時,求M點的極坐標;
(2)將射線OM繞原點O逆時針旋轉(zhuǎn)
與該曲線相交于點N,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為
(m為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
,直線
與曲線C交于M,N兩點.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求|MN|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的個數(shù)是( ).
①在
中,若
,則
是等腰三角形;
②在
中,若
,則![]()
③兩個向量
,
共線的充要條件是存在實數(shù)
,使![]()
④等差數(shù)列的前
項和公式是常數(shù)項為0的二次函數(shù).
A.0B.1C.2D.3
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com