已知橢圓的一個(gè)頂點(diǎn)為
,焦點(diǎn)在
軸上,中心在原點(diǎn).若右焦點(diǎn)到直線
的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線
與橢圓相交于不同的兩點(diǎn)
.當(dāng)
時(shí),求
的取值范圍.
(1)
(2)![]()
解析試題分析:(1)依題意可設(shè)橢圓方程為
,則右焦點(diǎn)
,
由題設(shè)
,解得
, 4分
故所求橢圓的方程為
。 5分
(2)設(shè)
,P為弦MN的中點(diǎn),
由
得
,
直線與橢圓相交,![]()
,① 8分
,從而
,
,又
,則:
,即
, ② 10分
把②代入①得
,解得
, 11分
由②得
,解得
. 12分
綜上求得
的取值范圍是
. 13分
考點(diǎn):橢圓方程性質(zhì)及直線與橢圓的位置關(guān)系
點(diǎn)評:求橢圓方程時(shí)需注意其焦點(diǎn)位置,當(dāng)直線與橢圓相交時(shí),常采用聯(lián)立方程,利用韋達(dá)定理設(shè)而不求的方法求解
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
年
月
日
時(shí)
分
秒“嫦娥二號(hào)”探月衛(wèi)星由長征三號(hào)丙運(yùn)載火箭送入近地點(diǎn)高度約
公里、遠(yuǎn)地點(diǎn)高度約
萬公里的直接奔月橢圓(地球球心
為一個(gè)焦點(diǎn))軌道Ⅰ飛行。當(dāng)衛(wèi)星到達(dá)月球附近的特定位置時(shí),實(shí)施近月制動(dòng)及軌道調(diào)整,衛(wèi)星變軌進(jìn)入遠(yuǎn)月面
公里、近月面
公里(月球球心
為一個(gè)焦點(diǎn))的橢圓軌道Ⅱ繞月飛行,之后衛(wèi)星再次擇機(jī)變軌進(jìn)入以
為圓心、距月面
公里的圓形軌道Ⅲ繞月飛行,并開展相關(guān)技術(shù)試驗(yàn)和科學(xué)探測。已知地球半徑約為
公里,月球半徑約為
公里。
(Ⅰ)比較橢圓軌道Ⅰ與橢圓軌道Ⅱ的離心率的大。
(Ⅱ)以
為右焦點(diǎn),求橢圓軌道Ⅱ的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直線
與拋物線
相切于點(diǎn)
)且與
軸交于點(diǎn)
為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為
.![]()
(1)若動(dòng)點(diǎn)
滿足
|
=
,求點(diǎn)
的軌跡
.
(2)若過點(diǎn)
的直線
(斜率不等于零)與(1)中的軌跡
交于不同的兩點(diǎn)
,試求
與
面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,且過點(diǎn)
.![]()
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓
相切的直線
交拋物線于不同的兩點(diǎn)
若拋物線上一點(diǎn)
滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
(a>b>0)的焦距為4,且與橢圓
有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知兩點(diǎn)F1(-1,0)及F2(1,0),點(diǎn)P在以F1、F2為焦點(diǎn)的橢圓C上,且|PF1|、|F1F2|、|PF2|構(gòu)成等差數(shù)列.![]()
(1)求橢圓C的方程;
(2)如圖,動(dòng)直線l:y=kx+m與橢圓C有且僅有一個(gè)公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且F1M⊥l, F2N⊥l.求四邊形F1MNF2面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
是直角坐標(biāo)平面內(nèi)的動(dòng)點(diǎn),點(diǎn)
到直線
(
是正常數(shù))的距離為
,到點(diǎn)
的距離為
,且
1.
(1)求動(dòng)點(diǎn)P所在曲線C的方程;
(2)直線
過點(diǎn)F且與曲線C交于不同兩點(diǎn)A、B,分別過A、B點(diǎn)作直線
的垂線,對應(yīng)的垂足分別為
,求證
=
;
(3)記
,
,![]()
(A、B、
是(2)中的點(diǎn)),
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:
的離心率為
,右焦點(diǎn)為F,且橢圓E上的點(diǎn)到點(diǎn)F距離的最小值為2.
(1)求橢圓E的方程;
(2)設(shè)橢圓E的左、右頂點(diǎn)分別為A,B,過點(diǎn)A的直線l與橢圓E及直線x=8分別相交于點(diǎn)M,N.
(ⅰ)當(dāng)過A,F(xiàn),N三點(diǎn)的圓半徑最小時(shí),求這個(gè)圓的方程;
(ⅱ)若
,求△ABM的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓E:
(
)離心率為
,上頂點(diǎn)M,右頂點(diǎn)N,直線MN與圓
相切,斜率為k的直線l經(jīng)過橢圓E在正半軸的焦點(diǎn)F,且交E于A、B不同兩點(diǎn).
(1)求E的方程;
(2)若點(diǎn)G(m,0)且| GA|=| GB|,
,求m的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com