【題目】已知數(shù)列
和
,
,
,(
且
),
,
.
(I)求
;
(Ⅱ)猜想數(shù)列
的通項(xiàng)公式,并證明;
(Ⅲ)設(shè)函數(shù)
,若
對任意
恒成立,求
的取值范圍.
【答案】(1)
(2)
(3)![]()
【解析】分析:(1)直接將
,代入遞推公式,即可的結(jié)果;(2)先證明
是以
為首項(xiàng),以
為公比的等比數(shù)列,可得
,即:
;(3)原不等式等價(jià)于
恒成立,所以
且
,判斷
的符號,可得
,結(jié)合函數(shù)的單調(diào)性,即可的結(jié)果.
詳解:(1)![]()
(2)猜想:![]()
證明:由提意
![]()
所以
,即
對所有
且
都成立,
易知
,所以
是以
為首項(xiàng),以
為公比的等比數(shù)列
所以
,即: ![]()
(3) ![]()
由
,所以
,
即
恒成立,所以
且![]()
因?yàn)?/span>
在
遞減,
遞增,所以
在
遞減,
遞增.
又因?yàn)?/span>
,當(dāng)
時(shí)
,當(dāng)
時(shí)
,所以
,而當(dāng)![]()
時(shí),
.
所以
,所以
,
注意到
,所以當(dāng)
時(shí),
,而
,所以
,即
,所以![]()
綜上
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面α過正方體ABCD﹣A1B1C1D1的面對角線
,且平面α⊥平面C1BD,平面α∩平面ADD1A1=AS,則∠A1AS的正切值為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)若不等式
的解集為
,求實(shí)數(shù)
的值;
(2)若不等式
對一切實(shí)數(shù)
恒成立,求實(shí)數(shù)
的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高一(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如圖,且將全班
人的成績記為
由右邊的程序運(yùn)行后,輸出
.據(jù)此解答如下問題:
![]()
注:圖中
表示“是”,
表示“否”
(1)求莖葉圖中破損處分?jǐn)?shù)在
,
,
各區(qū)間段的頻數(shù);
(2)利用頻率分布直方圖估計(jì)該班的數(shù)學(xué)測試成績的眾數(shù),中位數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形
中,
,點(diǎn)
為
的中點(diǎn),
為線段
(端點(diǎn)除外)上一動(dòng)點(diǎn).現(xiàn)將
沿
折起,使得平面
平面
.設(shè)直線
與平面
所成角為
,則
的最大值為( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐C﹣ABDE中,DB⊥平面ABC,AE∥DB,△ABC是邊長為2的等邊三角形,AE=1,M為AB的中點(diǎn). ![]()
(1)求證:CM⊥EM;
(2)若直線DM與平面ABC所成角的正切值為2,求二面角B﹣CD﹣E的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小明家訂了一份報(bào)紙,送報(bào)人可能在早上6 : 30至7 : 30之間把報(bào)紙送到小明家,小明離開家去上學(xué)的時(shí)間在早上7 : 00至8 : 30之間,問小明在離開家前能得到報(bào)紙(稱為事件
)的概率是多少( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x2﹣3,g(x)=mex , 若方程f(x)=g(x)有三個(gè)不同的實(shí)根,則m的取值范圍是( )
A.![]()
B.![]()
C.![]()
D.(0,2e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
為實(shí)數(shù),設(shè)函數(shù)
,設(shè)
.
(1)求
的取值范圍,并把
表示為
的函數(shù)
;
(2)若
恒成立,求實(shí)數(shù)
的取值范圍;
(3)若存在
使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com