(1)當(dāng)b>0時,若對任意x∈R都有f(x)≤1,證明a≤2
;
(2)當(dāng)b>1時,證明對任意x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤2
.
證明:(1)依題意設(shè)對任意x∈R都有f(x)≤1,
∵f(x)=-b(x-
)2+
,
∴f(
)=
≤1.
又∵a>0,b>0,∴a≤2
.
(2)必要性:對任意x∈[0,1],
|f(x)|≤1
f(x)≥-1,
∴f(1)≥-1,即a-b≥-1.∴a≥b-1.
對任意x∈[0,1],|f(x)|≤1
f(x)≤1,
∵b>1,可以推出f(
)≤1,即a·
-1≤1.
∴a≤2
.
∴b-1≤a≤2
.
充分性:∵b>1,a≥b-1,對任意x∈[0,1],可以推出ax-bx2≥b(x-x2)-x≥-x≥-1,即ax-bx2≥-1.
∵b>1,a≤2
,對任意x∈[0,1],可以推出ax-bx2≤2
x-bx2≤1,即ax-bx3≤1.
∴-1≤f(x)≤1.
綜上,當(dāng)b>1時,對任意x∈[0,1],|f(x)|≤1的充要條件是b-1≤a≤2
.
科目:高中數(shù)學(xué) 來源: 題型:
| A、?x∈R,f(x)≤f(x0) | B、?x∈R,f(x)≥f(x0) | C、?x∈R,f(x)≤f(x0) | D、?x∈R,f(x)≥f(x0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 1 |
| 8 |
| 3 |
| 2 |
| ln3-ln2 |
| 5 |
| ln2 |
| 3 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com