(本題滿分15分)已知函數![]()
(Ⅰ)當
時,求函數
的單調區(qū)間;
(Ⅱ)若
在
是單調函數,求實數
的取值范圍.
解:(Ⅰ) 當
時,
,
…………………………………………………………..…...2分,
當
時,
,所以
的減區(qū)間是
……………………………..………2分
當
時,
,所以
的減區(qū)間是
……………………………………….2分
(Ⅱ)
,
.
…………..….2分
①若
在
是單調減函數,則
在
上恒成立,不可能,故
不可能在
是單調減函數;…………………………………………………………………….……2分
②若
在
上是單調增函數,即
在
上恒成立,
所以
在
上恒成立,即
在
上恒成立,
令
,因為
在
上單調減函數,
,
……….4分
所以a的取值范圍是
……………………………………………………………………..1分
【解析】略
科目:高中數學 來源:2013屆浙江省余姚中學高三上學期期中考試文科數學試卷(帶解析) 題型:解答題
(本題滿分15分)已知點
(0,1),
,直線
、
都是圓
的切線(
點不在
軸上).
(Ⅰ)求過點
且焦點在
軸上的拋物線的標準方程;
(Ⅱ)過點(1,0)作直線
與(Ⅰ)中的拋物線相交于![]()
兩點,問是否存在定點
使
為常數?若存在,求出點
的坐標及常數;若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三10月月考理科數學 題型:解答題
(本題滿分15分)已知函數
.
(Ⅰ)若
為定義域上的單調函數,求實數m的取值范圍;
(Ⅱ)當
時,求函數
的最大值;
(Ⅲ)當
,且
時,證明:
.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三下學期2月模擬考試文科數學 題型:解答題
(本題滿分15分)已知圓N:
和拋物線C:
,圓的切線
與拋物線C交于不同的兩點A,B,
(1)當直線
的斜率為1時,求線段AB的長;
(2)設點M和點N關于直線
對稱,問是否存在直線
使得
?若存在,求出直線
的方程;若不存在,請說明理由.
![]()
查看答案和解析>>
科目:高中數學 來源:杭州市2010年第二次高考科目教學質量檢測 題型:解答題
(本題滿分15分)已知直線
,曲線![]()
(1)若
且直線與曲線恰有三個公共點時,求實數
的取值;
(2)若
,直線與曲線M的交點依次為A,B,C,D四點,求|AB+|CD|的取值范圍。[來源:Z+xx+k.Com]
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com