【題目】已知函數(shù)
,
.
(1)求過點(diǎn)
的
的切線方程;
(2)當(dāng)
時(shí),求函數(shù)
在
的最大值;
(3)證明:當(dāng)
時(shí),不等式
對(duì)任意
均成立(其中
為自然對(duì)數(shù)的底數(shù),
).
【答案】(1)
,(2)當(dāng)
時(shí),
的最大值為
;
當(dāng)
時(shí),
的最大值為
;(3)見解析
【解析】試題分析:(1)設(shè)出切點(diǎn)坐標(biāo),表示出切線方程,代入點(diǎn)的坐標(biāo),求出切線方程即可;
(2)求出函數(shù)的導(dǎo)數(shù),求出函數(shù)的單調(diào)區(qū)間,求出F(x)的最大值即可;
(3)問題可化為m>(x﹣2)ex+lnx﹣x,設(shè)
,要證m≥﹣3時(shí)m>h(x)對(duì)任意
均成立,只要證h(x)max<﹣3,根據(jù)函數(shù)的單調(diào)性證明即可.
試題解析:
解:(1)設(shè)切點(diǎn)坐標(biāo)為
,則切線方程為
,
將
代入上式,得
,
,
∴切線方程為
;
(2)當(dāng)
時(shí),
,
,
∴
,
,
當(dāng)
時(shí),
,當(dāng)
時(shí),
,
∴
在
遞增,在
遞減,
∴當(dāng)
時(shí),
的最大值為
;
當(dāng)
時(shí),
的最大值為
;
(3)
可化為
,
設(shè)
,
,要證
時(shí)
對(duì)任意
均成立,只要證
,下證此結(jié)論成立.
∵
,∴當(dāng)
時(shí),
,
設(shè)
,則
,∴
在
遞增,
又∵
在區(qū)間
上的圖象是一條不間斷的曲線,
且
,
,
∴
使得
,即
,
,
當(dāng)
時(shí),
;當(dāng)
時(shí),
,
;
∴函數(shù)
在
遞增,在
遞減,
∴
,
∵
在
遞增,∴
,即
,
∴當(dāng)
時(shí),不等式
對(duì)任意
均成立.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,點(diǎn)
在橢圓
上
(
)求
的方程.
(
)設(shè)直線
不經(jīng)過
點(diǎn)且與
相交于
、
兩點(diǎn),若直線
與直線
的斜率的和為
,
證明:
過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,
,其中第一項(xiàng)是20,接下來的兩項(xiàng)是20,21,再接下來的三項(xiàng)是20,21,22,依此類推. 設(shè)該數(shù)列的前
項(xiàng)和為
,
規(guī)定:若
,使得
(
),則稱
為該數(shù)列的“佳冪數(shù)”.
(Ⅰ)將該數(shù)列的“佳冪數(shù)”從小到大排列,直接寫出前3個(gè)“佳冪數(shù)”;
(Ⅱ)試判斷50是否為“佳冪數(shù)”,并說明理由;
(III)(i)求滿足
>70的最小的“佳冪數(shù)”
;
(ii)證明:該數(shù)列的“佳冪數(shù)”有無數(shù)個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)當(dāng)
時(shí),求
在點(diǎn)
的切線方程;
(2)若對(duì)
,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市教育局對(duì)該市普通高中學(xué)生進(jìn)行學(xué)業(yè)水平測(cè)試,試卷滿分120分,現(xiàn)從全市學(xué)生中隨機(jī)抽查了10名學(xué)生的成績,其莖葉圖如下圖所示:
![]()
(1)已知10名學(xué)生的平均成績?yōu)?8,計(jì)算其中位數(shù)和方差;
(2)已知全市學(xué)生學(xué)習(xí)成績分布服從正態(tài)分布
,某校實(shí)驗(yàn)班學(xué)生30人.
①依據(jù)(1)的結(jié)果,試估計(jì)該班學(xué)業(yè)水平測(cè)試成績?cè)?/span>
的學(xué)生人數(shù)(結(jié)果四舍五入取整數(shù));
②為參加學(xué)校舉行的數(shù)學(xué)知識(shí)競賽,該班決定推薦成績?cè)?/span>
的學(xué)生參加預(yù)選賽若每個(gè)學(xué)生通過預(yù)選賽的概率為
,用隨機(jī)變量
表示通過預(yù)選賽的人數(shù),求
的分布列和數(shù)學(xué)期望.
正態(tài)分布參考數(shù)據(jù): ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)確定函數(shù)
在定義域上的單調(diào)性,并寫出詳細(xì)過程;
(2)若
在
上恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面
為矩形,側(cè)面
為正三角形,且平面
平面,
為
中點(diǎn),
.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)若二面角
的平面角大小
滿足
,求四棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,記
.
(1)求證:
在區(qū)間
內(nèi)有且僅有一個(gè)實(shí)數(shù);
(2)用
表示
中的最小值,設(shè)函數(shù)
,若方程
在區(qū)間
內(nèi)有兩個(gè)不相等的實(shí)根
,記
在
內(nèi)的實(shí)根為
.求證:
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com