分析 (Ⅰ)由不等式|x+3|<2x+1,可得$\left\{\begin{array}{l}{x≤-3}\\{-(x+3)<2x+1}\end{array}\right.$或$\left\{\begin{array}{l}{x>-3}\\{x+3<2x+1}\end{array}\right.$,解出即可得出.
(Ⅱ)由于|x-t|+|x+$\frac{1}{t}$|≥$|x-t-(x+\frac{1}{t})|$=$|t+\frac{1}{t}|$=|t|+$\frac{1}{|t|}$,已知關(guān)于x的方程|x-t|+|x+$\frac{1}{t}$|=m(t≠0)有解,|t|+$\frac{1}{|t|}$≥2,另一方面,|t|+$\frac{1}{|t|}$=2,即可得出.
解答 解:(Ⅰ)由不等式|x+3|<2x+1,
可得$\left\{\begin{array}{l}{x≤-3}\\{-(x+3)<2x+1}\end{array}\right.$或$\left\{\begin{array}{l}{x>-3}\\{x+3<2x+1}\end{array}\right.$,
解得x>2.
依題意m=2.
(Ⅱ)∵|x-t|+|x+$\frac{1}{t}$|≥$|x-t-(x+\frac{1}{t})|$=$|t+\frac{1}{t}|$=|t|+$\frac{1}{|t|}$,
當(dāng)且僅當(dāng)(x-t)$(x+\frac{1}{t})$=0時(shí)取等號(hào),
∵關(guān)于x的方程|x-t|+|x+$\frac{1}{t}$|=m(t≠0)有解,
|t|+$\frac{1}{|t|}$≥2,
另一方面,|t|+$\frac{1}{|t|}$=2,
∴|t|+$\frac{1}{|t|}$=2,
解得t=±1.
點(diǎn)評(píng) 本小題考查絕對(duì)值不等式的解法與性質(zhì)、不等式的證明等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查分類(lèi)與整合思想、化歸與轉(zhuǎn)化思想等,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
| 分組 | 頻數(shù) | 頻率 |
| [10,15) | 10 | 0.25 |
| [15,20) | 24 | n |
| [20,25) | 4 | 0.10 |
| [25,30) | m | p |
| 合計(jì) | M | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 4 | B. | 8 | C. | 4$\sqrt{5}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 3π | B. | 6π | C. | 9π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com