【題目】盒中共有10個球,其中有5個紅球,3個黃球和2個綠球,這些球除顏色外完全相同.
(1)從盒中一次隨機(jī)取出3個球,求取出的3個球顏色相同的概率
;
(2)從盒中一次隨機(jī)取出4個球,其中紅球、黃球、綠球的個數(shù)分別記為
,隨機(jī)變量
表示
中的最大數(shù),求
的概率分布和數(shù)學(xué)期望
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐
的展開圖如圖二,其中四邊形
為邊長等于
的正方形,
和
均為正三角形,在三棱錐
中:
![]()
(1)證明:平面
平面
;
(2)若
是
的中點,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)討論函數(shù)
的單調(diào)性;
(2)當(dāng)a=1時,若關(guān)于
的不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為比較甲、乙兩地某月14時的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中14時的氣溫數(shù)據(jù)(單位:℃)制成如圖所示的莖葉圖.考慮以下結(jié)論:
①甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫;
②甲地該月14時的平均氣溫高于乙地該月14時的平均氣溫;
③甲地該月14時的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時的氣溫的標(biāo)準(zhǔn)差;
④甲地該月14時的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時的氣溫的標(biāo)準(zhǔn)差.
其中根據(jù)莖葉圖能得到的統(tǒng)計結(jié)論的標(biāo)號為( )
![]()
A.①③B.①④C.②③D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若正項數(shù)列
的前
項積為
,記
.
(1)若
為等比數(shù)列,公比為
,
為等差數(shù)列,求
的值;
(2)設(shè)
當(dāng)
時,
若存在唯一的正整數(shù)
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,
是過定點
且傾斜角為
的直線;在極坐標(biāo)系(以坐標(biāo)原點
為極點,以
軸非負(fù)半軸為極軸,取相同單位長度)中,曲線
的極坐標(biāo)方程為
.
(1)寫出直線
的參數(shù)方程,并將曲線
的方程化為直角坐標(biāo)方程;
(2)若曲線
與直線
相交于不同的兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次不等式ax2+x+b>0的解集為(-∞,-2)∪(1,+∞).
(Ⅰ)求a和b的值;
(Ⅱ)求不等式ax2-(c+b)x+bc<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
(
)的離心率為
,左、右焦點分別為
、
,
為橢圓的下頂點,
交橢圓于另一點
、
的面積
.
![]()
(1)求橢圓的方程;
(2)過點
作直線
交橢圓于
、
兩點,點
關(guān)于
軸的對稱點為
,問:直線
是否過定點?若是,請求出定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
滿足
時,
;
時
,若函數(shù)
的圖象與直線
有四個不同的公共點,則實數(shù)
的取值范圍是( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com