欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x(x-a)2+b在x=2處有極大值.
(Ⅰ)當[-2,4]時,函數y=f(x)的圖象在拋物線y=1+45x-9x2的下方,求b的取值范圍.
(Ⅱ)若過原點有三條直線與曲線y=f(x)相切,求b的取值范圍.
考點:利用導數研究函數的極值
專題:函數的性質及應用,導數的概念及應用
分析:(1)其中一個函數的圖象在另一個函數圖象的下方,轉化為兩個函數的“差函數”在相應區(qū)間內恒小于0的問題;
(2)求切線主要還是抓住切點,因此既然有三條切線,因此應該有三個切點,也就是利用切點表示的方程將原點代入后,得到關于切點橫坐標x的方程有三個不同的實數根.再結合導數研究函數的圖象求解.
解答: 解:(Ⅰ)f(x)=x(x-a)2+b=x3-2ax2+a2x+b⇒f'(x)=3x2-4ax+a2,f'(2)=12-8a+a2=0⇒a=2或a=6,
當a=2時,函數在x=2處取得極小值,舍去;
當a=6時,f'(x)=3x2-24x+36=3(x-2)(x-6),
函數在x=2處取得極大值,符合題意,∴a=6.
∵當x∈[-2,4]時,函數y=f(x)的圖象在拋物線y=1+45x-9x2的下方,
∴x3-12x2+36x+b<1+45x-9x2在x∈[-2,4]時恒成立,
即b<-x3+3x2+9x+1在x∈[-2,4]時恒成立,令h(x)=-x3+3x2+9x+1,
則h'(x)=-3x2+6x+9=-3(x-3)(x+1),由h'(x)=0得,x1=-1,x2=3.
∵h(-2)=3,h(-1)=-4,h(3)=28,h(4)=21,
∴h(x)在[-2,4]上的最小值是-4,b<-4.
(Ⅱ)f(x)=x3-12x2+36x+b,設切點為(x0
x
3
0
-12
x
2
0
+36x0+b)
,
則切線斜率為f′(x)=3
x
2
0
-24x0+36

切線方程為y-
x
3
0
+12
x
2
0
-36x0-b=(3
x
2
0
-24x0+36)(x-x0)
,
即  y=(3
x
2
0
-24x0+36)x-2
x
3
0
+12
x
2
0
+b

-2
x
3
0
+12
x
2
0
+b=0⇒b=2
x
3
0
-12
x
2
0

令g(x)=2x3-12x2,則g'(x)=6x2-24x=6x(x-4),
由g'(x)=0得,x1=0,x2=4.
函數g(x)的單調性如下:
x(-∞,0)0(0,4)4(4,+∞)
g'(x)+0-0+
g(x)極大值0極小值-64
∴當-64<b<0時,方程b=g(x)有三個不同的解,過原點有三條直線與曲線y=f(x)相切.
點評:本題充分體現了數形結合的思想在研究函數的零點中的作用,當然利用導數研究單調性、極值之必須走的常規(guī)路子.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知A={x∈z|2x2+x-1=0}、B={x|4x2+1=0}.則A∪B=( 。
A、{-
1
2
1
2
,-1}
B、{
1
2
}
C、{-1}
D、{
1
2
,-1}

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓
x2
25
+
y2
m
=1(0<m<10)上的一點P到橢圓一個焦點的距離為3,則P到另一焦點距離為(  )
A、2B、3C、5D、7

查看答案和解析>>

科目:高中數學 來源: 題型:

已知點A(3,0)是圓x2+y2=25內的一個定點,以A為直角頂點作Rt△ABC,且點B、C在圓上,試求BC中點M的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x+
1
x
+alnx,x∈R.
(Ⅰ)若a=1,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若對任意的x∈[1,e],都有
2
e
≤f(x)≤2e恒成立,求實數a的取值范圍.(注:e為自然對數的底數.)

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,⊙O1和⊙O2外切于點P,延長PO1交⊙O1于點A,延長PO2交⊙O2于點D,若AC與⊙O2相切于點C,且交⊙O1于點B.求證:
(1)PC平分∠BPD;
(2)PC2=PB•PD.

查看答案和解析>>

科目:高中數學 來源: 題型:

在四面體P-ABC中,PA,PB,PC兩兩垂直,設PA=PB=PC=a,則點P到平面ABC的距離為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的頂點B在平面α內,A、C在α的同側,AB,BC與α所成的角分別是30°和45°,若AB=3,BC=4
2
,AC=5,則AC與α所成角的余弦值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知一元二次方程x2+ax+2b=0有兩個根(a,b為實數),一個根在區(qū)間(0,1)內,另一個根在區(qū)間(1,2)內,則點(a,b)對應區(qū)域的面積為
 

查看答案和解析>>

同步練習冊答案