【題目】已知c>0,且c≠1,設(shè)p:函數(shù)y=cx在R上單調(diào)遞減;q:函數(shù)f(x)=x2﹣2cx+1在(
,+∞)上為增函數(shù),若“p且q”為假,“p或q”為真,求實數(shù)c的取值范圍.
【答案】解∵函數(shù)y=cx在R上單調(diào)遞減,∴0<c<1.
即p:0<c<1,
∵c>0且c≠1,∴¬p:c>1.
又∵f(x)=x2﹣2cx+1在(
,+∞)上為增函數(shù),∴c≤
.
即q:0<c≤
,
∵c>0且c≠1,∴¬q:c>
且c≠1.
又∵“p或q”為真,“p且q”為假,
∴p真q假,或p假q真.
①當p真,q假時,{c|0<c<1}∩{c|c>
,且c≠1}={c|
}.
②當p假,q真時,{c|c>1}∩{c|0<c
}=.
綜上所述,實數(shù)c的取值范圍是{c|
}
【解析】由函數(shù)y=cx在R上單調(diào)遞減,知p:0<c<1,¬p:c>1;由f(x)=x2﹣2cx+1在(
,+∞)上為增函數(shù),知q:0<c≤
,¬q:c>
且c≠1.由“p或q”為真,“p且q”為假,知p真q假,或p假q真,由此能求出實數(shù)c的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱
中,
,
,
,
分別為
和
上的點,且
.
![]()
(1)當
為
中點時,求證:
;
(2)當
在
上運動時,求三棱錐
體積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱
中,側(cè)棱
底面
,
,
為
的中點,
,四棱錐
的體積為
.
![]()
(Ⅰ)求證:
平面
;
(Ⅱ)求直線
與平面
所成角的正弦值;
(Ⅲ)求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}滿足Sn=2n﹣an(n∈N*).
(1)計算a1 , a2 , a3 , a4 , 并由此猜想通項公式an;
(2)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(x>0).
(1)試判斷函數(shù)f(x)在(0,+∞)上單調(diào)性并證明你的結(jié)論;
(2)若f(x)>
恒成立,求整數(shù)k的最大值;
(3)求證:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n﹣3 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”近年來成為了百姓耳熟能詳?shù)臒衢T詞匯,對于旅游業(yè)來說,“一帶一路”戰(zhàn)略的提出,讓“絲路之旅”超越了旅游產(chǎn)品、旅游線路的簡單范疇,賦予了旅游促進跨區(qū)域融合的新理念. 而其帶來的設(shè)施互通、經(jīng)濟合作、人員往來、文化交融更是將為相關(guān)區(qū)域旅游發(fā)展帶來巨大的發(fā)展機遇.為此,旅游企業(yè)們積極拓展相關(guān)線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務(wù).某市旅游局為了解游客的情況,以便制定相應(yīng)的策略. 在某月中隨機抽取甲、乙兩個景點10天的游客數(shù),統(tǒng)計得到莖葉圖如下:
![]()
(1)若將圖中景點甲中的數(shù)據(jù)作為該景點較長一段時期內(nèi)的樣本數(shù)據(jù),以每天游客人數(shù)頻率作為概率.今從這段時期內(nèi)任取4天,記其中游客數(shù)超過130人的天數(shù)為
,求概率
;
(2)現(xiàn)從上圖20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點中各取1天),記其中游客數(shù)不低于125且不高于135人的天數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,E,F(xiàn)分別為PA,BD中點,PA=PD=AD=2.
(Ⅰ)求證:EF∥平面PBC;
(Ⅱ)求二面角E﹣DF﹣A的余弦值;
(Ⅲ)在棱PC上是否存在一點G,使GF⊥平面EDF?若存在,指出點G的位置;若不存在,說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a3=6,a5+a7=24,{an}的前n項和為Sn .
(1)求an及Sn;
(2)令bn=
(n∈N+),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于數(shù)列有下列命題:
①數(shù)列{an}的前n項和為Sn , 且Sn=an﹣1(a∈R),則{an}為等差或等比數(shù)列;
②數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不會有am=an(m≠n),
③一個等差數(shù)列{an}中,若存在ak+1>ak>0(k∈N*),則對于任意自然數(shù)n>k,都有an>0;
④一個等比數(shù)列{an}中,若存在自然數(shù)k,使akak+1<0,則對于任意n∈N* , 都有anan+1<0,
其中正確命題的序號是 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com