(本小題滿分13分)
已知橢圓C的對稱軸為坐標軸,且短軸長為4,離心率為
。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的焦點在y軸上,斜率為1的直線l與C相交于A,B兩點,且
,求直線l的方程。
(Ⅰ)
(Ⅱ)![]()
【解析】
試題分析:(Ⅰ)設(shè)橢圓C的長半軸長為a(a>0),短半軸長為b(b>0),
則2b=4,
。
2分
解得a=4,b=2。 3分
因為橢圓C的對稱軸為坐標軸,
所以橢圓C的方程為標準方程,且為
。
5分
(Ⅱ)設(shè)直線l的方程為
,A(x1,y1),B(x2,y2),
6分
由方程組
,消去y,
得
,
7分
由題意,得
, 8分
且
, 9分
因為![]()
, 11分
所以
,解得m=±2,
驗證知△>0成立,
所以直線l的方程為
。
13分
考點:橢圓方程幾何性質(zhì)及直線與橢圓相交弦長問題
點評:直線與橢圓相交問題常借助與韋達定理設(shè)而不求簡化計算,本題涉及到的弦長公式
,其中k是直線斜率,
是兩交點橫坐標
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù)![]()
.
(1)求函數(shù)
的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數(shù)
在區(qū)間
上的圖象.
(3)設(shè)0<x<
,且方程
有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域為
的函數(shù)
是奇函數(shù).
(1)求
的值;(2)判斷函數(shù)
的單調(diào)性;
(3)若對任意的
,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合
,
,
.
(1)求
(∁
; (2)若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱
的所有棱長都為2,
為
的中點。
(Ⅰ)求證:
∥平面
;
(Ⅱ)求異面直線
與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知
為銳角,且
,函數(shù)
,數(shù)列{
}的首項
.
(1) 求函數(shù)
的表達式;
(2)在
中,若
A=2
,
,BC=2,求
的面積
(3) 求數(shù)列
的前
項和![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com