【題目】已知橢圓
:
過點
,且橢圓的離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)斜率為
的直線
交橢圓
于
,
兩點,且
.若直線
上存在點P,使得
是以
為頂角的等腰直角三角形,求直線
的方程.
科目:高中數學 來源: 題型:
【題目】△ABC中,A(0,1),AB邊上的高CD所在直線的方程為x+2y-4=0,AC邊上的中線BE所在直線的方程為2x+y-3=0.
(1)求直線AB的方程;
(2)求直線BC的方程;
(3)求△BDE的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了適應高考改革,某中學推行“創(chuàng)新課堂”教學。高一平行甲班采用“傳統(tǒng)教學”的教學方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學方式授課,為了比較教學效果,期中考試后,分別從兩個班中各隨機抽取
名學生的成績進行統(tǒng)計分析,結果如下表:(記成績不低于
分者為“成績優(yōu)秀”)
![]()
(1)由以上統(tǒng)計數據填寫下面的
列聯(lián)表,并判斷是否有
以上的把握認為“成績優(yōu)秀與教學方式有關”?
![]()
(2)現(xiàn)從上述樣本“成績不優(yōu)秀”的學生中,抽取3人進行考核,記“成績不優(yōu)秀”的乙班人數為
,求
的分布列和期望.
參考公式![]()
臨界值表
![]()
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程
1表示焦點在x軸上的雙曲線.
(1)命題q為真命題,求實數k的取值范圍;
(2)若命題“p∨q”為真,命題“p∧q”為假,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓
,點P是曲線
上的動點,過點P分別向圓N引切線
(
為切點)
(1)若
,求切線的方程;
(2)若切線
分別交y軸于點
,點P的橫坐標大于2,求
的面積S的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點在x軸上,中心在坐標原點,離心率
,橢圓上的點到左焦點的距離的最大值為
.
(1)求橢圓的標準方程;
(2)過橢圓的右焦點F作與坐標軸不垂直的直線l,交橢圓于A、B兩點,設點
是線段OF上的一個動點,且
,求m的取值范圍;
(3)設點C是點A關于x軸的對稱點,在x軸上是否存在一個定點N,使得C、B、N三點共線?若存在,求出定點N的坐標,若不存在,請說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設復平面上點
對應的復數
(
為虛數單位)滿足
,點
的軌跡方程為曲線
. 雙曲線
:
與曲線
有共同焦點,傾斜角為
的直線
與雙曲線
的兩條漸近線的交點是
、
,
,
為坐標原點.
(1)求點
的軌跡方程
;
(2)求直線
的方程;
(3)設△PQR三個頂點在曲線
上,求證:當
是△PQR重心時,△PQR的面積是定值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com