【題目】如圖,圓
:
.
![]()
(Ⅰ)若圓C與x軸相切,求圓C的方程;
(Ⅱ)已知
,圓
與x軸相交于兩點
(點
在點
的左側(cè)).過點
任作一條直線與圓
:
相交于兩點A,B.問:是否存在實數(shù)a,使得
=
?若存在,求出實數(shù)a的值,若不存在,請說明理由.
【答案】(1)
;(2)
.
【解析】
試題分析:(1)聯(lián)立直線與圓的方程,利用判別式為0得出
值,即得圓的方程;(2)先求出
,聯(lián)立直線與圓的方程,利用根與系數(shù)的關(guān)系進行求解.
解題思路: 直線圓的位置關(guān)系,主要涉及直線與圓相切、相交、相離,在解決直線圓的位置關(guān)系時,要注意結(jié)合初中平面幾何中的直線與圓的知識..
試題解析:(Ⅰ)因為![]()
得
,
由題意得
,所以![]()
故所求圓C的方程為
.
(Ⅱ)令
,得
,
即![]()
所以![]()
假設(shè)存在實數(shù)
,
當(dāng)直線AB與
軸不垂直時,設(shè)直線AB的方程為
,
代入
得,
,
設(shè)
從而![]()
因為![]()
而![]()
![]()
![]()
因為
,所以
,即
,得
.
當(dāng)直線AB與
軸垂直時,也成立.
故存在
,使得
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月智能共享單車項目正式登陸某市,兩種車型
“小綠車”、“小黃車”
采用分時段計費的方式,“小綠車”每30分鐘收費
元
不足30分鐘的部分按30分鐘計算
;“小黃車”每30分鐘收費1元
不足30分鐘的部分按30分鐘計算
有甲、乙、丙三人相互獨立的到租車點租車騎行
各租一車一次
設(shè)甲、乙、丙不超過30分鐘還車的概率分別為
,
,
,三人租車時間都不會超過60分鐘
甲、乙均租用“小綠車”,丙租用“小黃車”.
求甲、乙兩人所付的費用之和等于丙所付的費用的概率;
2
設(shè)甲、乙、丙三人所付的費用之和為隨機變量
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C1:
與圓C2:
相交于A、B兩點,
(1)求公共弦AB所在的直線方程;
(2)求圓心在直線
上,且經(jīng)過A、B兩點的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
+
=1(a>b>0)經(jīng)過點(0,
),離心率e=
.
(Ⅰ)求橢圓C的方程及焦距.
(Ⅱ)橢圓C的左焦點為F1 , 右頂點為A,經(jīng)過點A的直線l與橢圓C的另一交點為P.若點B是直線x=2上異于點A的一個動點,且直線BF1⊥l,問:直線BP是否經(jīng)過定點?若是,求出該定點的坐標(biāo);若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代算書《孫子算經(jīng)》中有一著名的問題:今有物,不知其數(shù).三三數(shù)之剩二;五五數(shù)之剩三;七七數(shù)之剩二.問物幾何?后來,南宋數(shù)學(xué)家秦九昭在其《數(shù)書九章》中對此問題的解法做了系統(tǒng)的論述,并稱之為“大衍求一術(shù)”.如圖程序框圖的算法思路源于“大衍求一術(shù)”,執(zhí)行該程序框圖,若輸入的a,b的值分別為40,34,則輸出的c的值為( ) ![]()
A.7
B.9
C.20
D.22
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(﹣x)=4﹣f(x),函數(shù)
,若曲線y=f(x)與y=g(x)圖象的交點分別為(x1 , y1),(x2 , y2),(x3 , y3),…,(xm , ym),則
(結(jié)果用含有m的式子表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) f(x)=
,x∈R,其中 a>0.
(Ⅰ)求函數(shù) f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù) f(x)(x∈(-2,0))的圖象與直線 y=a 有兩個不同交點,求 a 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體ABCD﹣A'B'C'D'中,E是AA'的中點,P是三角形BDC'內(nèi)的動點,EP⊥BC',則P的軌跡長為( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為
(
為參數(shù)),在以坐標(biāo)原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=2sin θ,直線
:θ=
(ρ>0),A(2,0).
(1)把C1的普通方程化為極坐標(biāo)方程,并求點A到直線
的中距離;
(2)設(shè)直線
分別交C1,C2于點P,Q,求△APQ的面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com