【題目】已知?jiǎng)訄A
過定點(diǎn)
,且與定直線
相切.
(1)求動(dòng)圓圓心
的軌跡
的方程;
(2)過點(diǎn)
的任一條直線
與軌跡
交于不同的兩點(diǎn)
,試探究在
軸上是否存在定點(diǎn)
(異于點(diǎn)
),使得
?若存在,求點(diǎn)
的坐標(biāo);若不存在,說明理由.
【答案】(1)
,(2)見解析
【解析】
(1)根據(jù)拋物線的定義即可得解;
(2)假設(shè)存在點(diǎn)
滿足題設(shè)條件,由題意可得直線
與
的斜率互為相反數(shù),即
,設(shè)
,
,設(shè)
,再由直線與拋物線聯(lián)立,利用韋達(dá)定理代入求解即可.
(1)解法1:依題意動(dòng)圓圓心
到定點(diǎn)
的距離與到定直線
的距離相等,
由拋物線的定義,可得動(dòng)圓圓心
的軌跡是以
為焦點(diǎn),
為準(zhǔn)線的拋物線, 其中
.
動(dòng)圓圓心
的軌跡
的方程為
.
解法2:設(shè)動(dòng)圓圓心
,依題意:
.
化簡(jiǎn)得:
,即為動(dòng)圓圓心
的軌跡
的方程
(2)解:假設(shè)存在點(diǎn)
滿足題設(shè)條件.
由
可知,直線
與
的斜率互為相反數(shù),
即
①
直線
的斜率必存在且不為
,設(shè)
,
由
得
.
由
,得
或
.
設(shè)
,則
.
由①式得
,
,即
.
消去
,得
,
,
,
存在點(diǎn)
使得
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù) z a bi ,其中 a .b 為實(shí)數(shù),i 為虛數(shù)單位,
為 z 的共軛復(fù)數(shù),且存在非零實(shí)數(shù) t ,使
成立.
(1)求 2a b 的值;
(2)若| z 2 | 5,求實(shí)數(shù) a 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)口袋內(nèi)有
個(gè)不同的紅球,
個(gè)不同的白球,
(1)從中任取
個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?
(2)若取一個(gè)紅球記
分,取一個(gè)白球記
分,從中任取
個(gè)球,使總分不少于
分的取法有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)2018年的高考考生人數(shù)是2015年高考考生人數(shù)的
倍,為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015年和2018年的高考情況,得到如圖柱狀圖:
![]()
則下列結(jié)論正確的是
![]()
A. 與2015年相比,2018年一本達(dá)線人數(shù)減少
B. 與2015年相比,2018年二本達(dá)線人數(shù)增加了
倍
C. 2015年與2018年藝體達(dá)線人數(shù)相同
D. 與2015年相比,2018年不上線的人數(shù)有所增加
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班上午有五節(jié)課,分別安排語文,數(shù)學(xué),英語,物理,化學(xué)各一節(jié)課.要求語文與化學(xué)相鄰,數(shù)學(xué)與物理不相鄰,且數(shù)學(xué)課不排第一節(jié),則不同排課法的種數(shù)是
A. 24B. 16C. 8D. 12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)
是奇函數(shù),
的定義域?yàn)?/span>
.當(dāng)
時(shí),
.(e為自然對(duì)數(shù)的底數(shù)).
(1)若函數(shù)
在區(qū)間
上存在極值點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)如果當(dāng)x≥1時(shí),不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐
中,
,
,
為
的中點(diǎn),
為
的中點(diǎn),且
為正三角形.
![]()
(1)求證:
平面
;
(2)若
,三棱錐
的體積為1,求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.直線
的極坐標(biāo)方程為
.
(1)求曲線
的極坐標(biāo)方程與直線
的直角坐標(biāo)方程;
(2)已知直線
與曲線
交于
兩點(diǎn),與
軸交于點(diǎn)
,求
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com