若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列
也是等比數(shù)列. 若數(shù)列
是等差數(shù)列,可類比得到關(guān)于等差數(shù)列的一個(gè)性質(zhì)為( ).
| A. |
| B. |
| C. |
| D. |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.
(文)對(duì)于數(shù)列
,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為
,公差為
的無(wú)窮等差數(shù)列
的子數(shù)列問(wèn)題,為此,他取了其中第一項(xiàng)
,第三項(xiàng)
和第五項(xiàng)
.
(1) 若
成等比數(shù)列,求
的值;
(2) 在
,
的無(wú)窮等差數(shù)列
中,是否存在無(wú)窮子數(shù)列
,使得數(shù)列
為等比數(shù)列?若存在,請(qǐng)給出數(shù)列
的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;
(3) 他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù)
,公比為正整數(shù)
(
)的無(wú)窮等比數(shù) 列
,總可以找到一個(gè)子數(shù)列
,使得
構(gòu)成等差數(shù)列”. 于是,他在數(shù)列
中任取三項(xiàng)
,由
與
的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
為等差數(shù)列,
為前
項(xiàng)和,
,則下列錯(cuò)誤的是( ).
| A. | B. |
| C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
等差數(shù)列{an}的公差d < 0,且a2a4 = 12,a2 + a4 = 8,則數(shù)列{an}的通項(xiàng)公式是( )
| A.a(chǎn)n = 2n-2 (n∈N*) | B.a(chǎn)n =" 2n" + 4 (n∈N*) |
| C.a(chǎn)n =-2n + 12 (n∈N*) | D.a(chǎn)n =-2n + 10 (n∈N*) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
在等差數(shù)列
中,![]()
,則此數(shù)列前30項(xiàng)和等于( )
| A.810 | B.840 | C.870 | D.900 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com