【題目】四棱錐
中,
面
,底面
是菱形,且
,
,過點(diǎn)
作直線
,
為直線
上一動點(diǎn).
![]()
(1)求證:
;
(2)當(dāng)面
面
時,求三棱錐
的體積.
【答案】(1)證明見解析;(2)
.
【解析】分析:(1)由
平面
得
,又在菱形
中有
,故得
平面
,于是得到
.(2)結(jié)合題意可得
平面
,故
.根據(jù)面
面
得到
,然后根據(jù)幾何圖形的計(jì)算得到
,于是
,
,又
,由此可得所求的三棱錐的體積.
詳解:(1)∵
,
∴直線
確定一平面
.
∵
平面
,
平面
,
∴
.
由題意知直線
在面
上的射影為
,
又在菱形
中有
,
,
∴
平面
,
∵
平面
,
∴
.
(2)由題意得
和
都是以
為底的等腰三角形,設(shè)
和
的交點(diǎn)為
,
![]()
連接
、
,則
,
,
又
,
∴
平面
.
又平面
面
,平面
面
,
∴
面
,
∴
.
在菱形
中,
,
,
∴
.
在
中,
.
在
中,設(shè)
,則
.
∴在
中,
,
又在直角梯形
中,
,
故
,
解得
,即
.
∴
,![]()
∴
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】5名男生4名女生站成一排,求滿足下列條件的排法:
(1)女生都不相鄰有多少種排法?
(2)男生甲、乙、丙排序一定(只考慮位置的前后順序),有多少種排法?
(3)男甲不在首位,男乙不在末位,有多少種排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一家公司生產(chǎn)某種品牌服裝的年固定成本為
萬元,每生產(chǎn)
千件需另投入
萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該品牌服裝
千件并全部銷售完,每千件的銷售收入為
萬元,且
.
(1)寫出年利潤
(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲得利潤最大?(注:年利潤=年銷售收入-年總成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為調(diào)查該校學(xué)生每周參加社會實(shí)踐活動的情況,隨機(jī)收集了若干名學(xué)生每周參加社會實(shí)踐活動的時間(單位:小時),將樣本數(shù)據(jù)繪制如圖所示的頻率分布直方圖,且在[0,2)內(nèi)的學(xué)生有1人.
![]()
(1)求樣本容量
,并根據(jù)頻率分布直方圖估計(jì)該校學(xué)生每周參加社會實(shí)踐活動時間的平均值;
(2)將每周參加社會實(shí)踐活動時間在[4,12]內(nèi)定義為“經(jīng)常參加社會實(shí)踐”,參加活動時間在[0,4)內(nèi)定義為“不經(jīng)常參加社會實(shí)踐”.已知樣本中所有學(xué)生都參加了青少年科技創(chuàng)新大賽,有13人成績等級為“優(yōu)秀”,其余成績?yōu)椤耙话恪保渲谐煽儍?yōu)秀的13人種“經(jīng)常參加社會實(shí)踐活動”的有12人.請將2×2列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.05的前提下認(rèn)為青少年科技創(chuàng)新大賽成績“優(yōu)秀”與經(jīng)常參加社會實(shí)踐活動有關(guān);
(3)在(2)的條件下,如果從樣本中“不經(jīng)常參加社會實(shí)踐”的學(xué)生中隨機(jī)選取兩人參加學(xué)校的科技創(chuàng)新班,求其中恰好一人成績優(yōu)秀的概率.
參考公式和數(shù)據(jù):
.
| 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(1)若
,判斷函數(shù)
的奇偶性,并加以證明;
(2)若函數(shù)
在
上是增函數(shù),求實(shí)數(shù)
的取值范圍;
(3)若存在實(shí)數(shù)
使得關(guān)于
的方程
有三個不相等的實(shí)數(shù)根,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
的直角頂點(diǎn)
在
軸上,點(diǎn)
為斜邊
的中點(diǎn),且
平行于
軸.
(Ⅰ)求點(diǎn)
的軌跡方程;
(Ⅱ)設(shè)點(diǎn)
的軌跡為曲線
,直線
與
的另一個交點(diǎn)為
.以
為直徑的圓交
軸于
即此圓的圓心為
,
求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠有4臺大型機(jī)器,在一個月中,一臺機(jī)器至多出現(xiàn)1次故障,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時需1名工人進(jìn)行維修,每臺機(jī)器出現(xiàn)故障需要維修的概率為
.
(1)若出現(xiàn)故障的機(jī)器臺數(shù)為
,求
的分布列;
(2) 該廠至少有多少名工人才能保證每臺機(jī)器在任何時刻同時出現(xiàn)故障時能及時進(jìn)行維修的概率不少于90%?
(3)已知一名工人每月只有維修1臺機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時維修,就使該廠產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤,若該廠現(xiàn)有2名工人,求該廠每月獲利的均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,
為焦點(diǎn)是
的拋物線上一點(diǎn),
為直線
上任一點(diǎn),
分別為橢圓
的上,下頂點(diǎn),且
三點(diǎn)的連線可以構(gòu)成三角形.
(1)求橢圓
的方程;
(2)直線
與橢圓
的另一交點(diǎn)分別交于點(diǎn)
,求證:直線
過定點(diǎn).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com