(本小題滿分12分)
如圖,已知四棱錐
,底面
為菱形,
平面
,
,
分別是
的中點.
(Ⅰ)
判定AE與PD是否垂直,并說明理由
(Ⅱ)若
為
上的動點,
與平面
所成最大角的正切值為
,求二面角
的余弦值。
![]()
(Ⅰ)垂直.證明:由四邊形
為菱形,
,可得
為正三角形.
因為
為
的中點,所以
.又
,因此
.
因為
平面
,
平面
,所以
.
而
平面
,
平面
且
,
所以
平面
.又
平面
,所以
.
(Ⅱ)解:設(shè)
,
為
上任意一點,連接
.
由(Ⅰ)知
平面
,則
為
與平面
所成的角.
在
中,
,所以當(dāng)
最短時,
最大,
即當(dāng)
時,
最大.
此時
,
因此
.又
,所以
, www..com
高#考#資#源#
所以
.
解法一:因為
平面
,
平面
,
所以平面
平面
.過
作
于
,則
平面
,
過
作
于
,連接
,則
為二面角
的平面角,
在
中,
,
,
又
是
的中點,在
中,
,
又
,在
中,
,
即所求二面角的余弦值為
.
解法二:由(Ⅰ)知
兩兩垂直,以
為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,又
分別為
的中點,
∴
,
,
所以
.
設(shè)平面
的一法向量為
,則
因此
取
,則
,
因為
,
,
,
所以
平面
,故
為平面
的一法向量.
又
,所以
.
因為二面角
為銳角,所以所求二面角的余弦值為
.
【解析】略
科目:高中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟(jì)增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的
、
、
.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com