【題目】已知一圓錐底面圓的直徑為3,圓錐的高為
,在該圓錐內(nèi)放置一個棱長為a的正四面體,并且正四面體在該幾何體內(nèi)可以任意轉(zhuǎn)動,則a的最大值為( )
A.3B.
C.
D.![]()
【答案】B
【解析】
根據(jù)題意,該四面體內(nèi)接于圓錐的內(nèi)切球,通過內(nèi)切球即可得到
的最大值.
解:依題意,四面體可以在圓錐內(nèi)任意轉(zhuǎn)動,故該四面體內(nèi)接于圓錐的內(nèi)切球,
設(shè)球心為
,球的半徑為
,下底面半徑為
,軸截面上球與圓錐母線的切點為
,圓錐的軸截面如圖:
則
,因為
,
故可得:
;
所以:三角形
為等邊三角形,故
是
的中心,
連接
,則
平分
,
;
所以
,即
,
即四面體的外接球的半徑為
.
另正四面體可以從正方體中截得,如圖:
從圖中可以得到,當(dāng)正四面體的棱長為
時,截得它的正方體的棱長為
,
而正四面體的四個頂點都在正方體上,
故正四面體的外接球即為截得它的正方體的外接球,
所以
,
所以
.
即
的最大值為
.
故選:B.
![]()
![]()
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)
是無窮數(shù)列,若存在正整數(shù)k,使得對任意
,均有
,則稱
是間隔遞增數(shù)列,k是
的間隔數(shù),下列說法正確的是( )
A.公比大于1的等比數(shù)列一定是間隔遞增數(shù)列
B.已知
,則
是間隔遞增數(shù)列
C.已知
,則
是間隔遞增數(shù)列且最小間隔數(shù)是2
D.已知
,若
是間隔遞增數(shù)列且最小間隔數(shù)是3,則![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|x﹣a|+|x+b|,ab>0.
(1)當(dāng)a=1,b=1時,求不等式f(x)<3的解集;
(2)若f(x)的最小值為2,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐
,底面
為平行四邊形,且
,點M為
的中點,
,且平面
平面
.
![]()
(1)求證:平面
平面
;
(2)當(dāng)直線
與平面
所成角的正切值為
時,求四棱錐
的體積及平面
將四棱錐分成的兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
.
(1)當(dāng)
時,
恒成立,求
的范圍;
(2)若
在
處的切線為
,求
的值.并證明當(dāng)
)時,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
滿足
,
,
.
(1)求函數(shù)
的解析式;
(2)求函數(shù)
的單調(diào)區(qū)間;
(3)當(dāng)
且
時,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內(nèi)的殘留程度,進行如下試驗:將200只小鼠隨機分成
兩組,每組100只,其中
組小鼠給服甲離子溶液,
組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學(xué)方法測算出殘留在小鼠體內(nèi)離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:
![]()
記
為事件:“乙離子殘留在體內(nèi)的百分比不低于
”,根據(jù)直方圖得到
的估計值為
.
(1)求乙離子殘留百分比直方圖中
的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
為直線
的傾斜角),以坐標(biāo)原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線
的直角坐標(biāo)方程,并求
時直線
的普通方程;
(2)直線
和曲線
交于
、
兩點,點
的直角坐標(biāo)為
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代教育要求學(xué)生掌握“六藝”,即“禮、樂、射、御、書、數(shù)”.某校為弘揚中國傳統(tǒng)文化,舉行有關(guān)“六藝”的知識競賽.甲、乙、丙三位同學(xué)進行了決賽.決賽規(guī)則:決賽共分
場,每場比賽的第一名、第二名、第三名的得分分別為
,選手最后得分為各場得分之和,決賽結(jié)果是甲最后得分為
分,乙和丙最后得分都為
分,且乙在其中一場比賽中獲得第一名,現(xiàn)有下列說法:
①每場比賽第一名得分
分;
②甲可能有一場比賽獲得第二名;
③乙有四場比賽獲得第三名;
④丙可能有一場比賽獲得第一名.
則以上說法中正確的序號是______.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com