設
,且曲線y=f(x)在x=1處的切線與x軸平行。
(Ⅰ)求
的值,并討論
的單調(diào)性;
(Ⅱ)證明:當![]()
(Ⅰ)函數(shù)的增區(qū)間為
減區(qū)間為![]()
(Ⅱ)見解析
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。利用導數(shù)來判定函數(shù)單調(diào)性和研究函數(shù)的最值的綜合運用。(1)利用
,且曲線y=f(x)在x=1處的切線與x軸平行,求解得到參數(shù)a的值,然后代入函數(shù)式中求解導數(shù)大于零或者小于零的解集,得到結論。
(2)在第一問的基礎上,根據(jù)
在
單調(diào)增加,故
在
的最大值為![]()
最小值為
,從而證明
即可。顯然成立
解:(Ⅰ)
由題知:
所以
=-1 ………2分
此時:![]()
![]()
所以函數(shù)的增區(qū)間為
減區(qū)間為
………5分
(Ⅱ)由(Ⅰ)知
在
單調(diào)增加,故
在
的最大值為
,
最小值為![]()
從而對任意
,![]()
,有![]()
而當
時,![]()
![]()
從而 ![]()
科目:高中數(shù)學 來源:2011-2012學年湖北岳中高中一輪復習理科數(shù)學滾動測試三解析版 題型:解答題
(14分)設函數(shù)f(x)=ax2+bx+k(k>0)在x=0處取得極值,且曲線y=f(x)在點(1,f(1))處的切線垂直于直線x+2y+1=0.
(1)求a,b的值;
(2)若函數(shù)g(x)=
,討論g(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學 題型:解答題
(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=
ax2+3x.
(1)設直線x=1與曲線y=f(x)和y=g(x)分別相交于點P、Q,且曲線y=f(x)和y=g(x)在點P、Q處的切線平行,若方程
f(x2+1)+g(x)=3x+k有四個不同的實根,求實數(shù)k的取值范圍;
(2)設函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆湖南省澧縣一中、岳陽縣一中高三11月聯(lián)考理科數(shù)學 題型:解答題
(本小題滿分13分)(第一問8分,第二問5分)
已知函數(shù)f(x)=2lnx,g(x)=
ax2+3x.
(1)設直線x=1與曲線y=f(x)和y=g(x)分別相交于點P、Q,且曲線y=f(x)和y=g(x)在點P、Q處的切線平行,若方程
f(x2+1)+g(x)=3x+k有四個不同的實根,求實數(shù)k的取值范圍;
(2)設函數(shù)F(x)滿足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com