若數(shù)列
滿足條件:存在正整數(shù)
,使得
對一切
都成立,則稱數(shù)列
為
級等差數(shù)列.
(1)已知數(shù)列
為2級等差數(shù)列,且前四項(xiàng)分別為
,求
的值;
(2)若
為常數(shù)),且
是
級等差數(shù)列,求
所有可能值的集合,并求
取最小正值時數(shù)列
的前3
項(xiàng)和
;
(3)若
既是
級等差數(shù)列
,也是
級等差數(shù)列,證明:
是等差數(shù)列.
(1)19,(2)
,(3)詳見解析.
解析試題分析:(1)解新定義數(shù)列問題,關(guān)鍵從定義出發(fā),建立等量關(guān)系.
,![]()
(2)本題化簡是關(guān)鍵.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d3/2/gmzje1.png" style="vertical-align:middle;" />是
級等差比數(shù)列,所以
,![]()
![]()
![]()
,所以
, 或![]()
,
最小正值等于
,此時![]()
![]()
![]()
,(3)充分性就是驗(yàn)證,易證,關(guān)鍵在于證必要性,可從兩者中在交集(共同元素)出發(fā).
,
成等差數(shù)列, 因此
既是
中的項(xiàng),也是
中的項(xiàng),
既是
中的項(xiàng),也是中
的項(xiàng),可得它們公差的關(guān)系,進(jìn)而推出三者結(jié)構(gòu)統(tǒng)一,得出等差數(shù)列的結(jié)論.
(1)
(2分)![]()
(4分)
(2)
是
級等差數(shù)列,![]()
![]()
![]()
(
) (1分)
(
)
所以
, 或![]()
對
恒成立時, ![]()
時,![]()
(3分)
最小正值等于
,此時![]()
由于
(
)
(
) (5分)![]()
(
) (6分)
(3)若
為
級等差數(shù)列,
,則
均成等差數(shù)列,(1分)
設(shè)等差數(shù)列
的公差分別為![]()
為
級等差數(shù)列,
,則
成等差數(shù)列,設(shè)公差為![]()
既是中
的項(xiàng),也是
中的項(xiàng),![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}中,a1=1,an+1=
(n∈N*).
(1)求證: 數(shù)列 {
+
}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)an
(2)若數(shù)列{bn}滿足bn=(3n-1)
an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(-1)nλ<Tn對一切n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列
首項(xiàng)為
,公比為q,求(1)該數(shù)列的前n項(xiàng)和
。
(2)若q≠1,證明數(shù)列
不是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列
的前
項(xiàng)和
和通項(xiàng)
滿足
。
(1)求數(shù)列
的通項(xiàng)公式;
(2)若數(shù)列
滿足
,求證:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列
中,
,公比
,
為
的前n項(xiàng)和.
(1)求![]()
(2)設(shè)
,求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,等比數(shù)列
的前n項(xiàng)和為
,數(shù)列
的前n項(xiàng)為
,且前n項(xiàng)和
滿足
.
(1)求數(shù)列
和
的通項(xiàng)公式:
(2)若數(shù)列
前n項(xiàng)和為
,問使
的最小正整數(shù)n是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
數(shù)列
滿足:
.
(1)求證:數(shù)列
是等比數(shù)列(要指出首項(xiàng)與公比);
(2)求數(shù)列
的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)C1、C2、…、Cn、…是坐標(biāo)平面上的一列圓,它們的圓心都在軸的正半軸上,且都與直線y=
x相切,對每一個正整數(shù)n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,已知{rn}為遞增數(shù)列.![]()
(1)證明:{rn}為等比數(shù)列;
(2)設(shè)r1=1,求數(shù)列
的前n項(xiàng)和.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com