【題目】如圖,從一個面積為
的半圓形鐵皮上截取兩個高度均為
的矩形,并將截得的兩塊矩形鐵皮分別以
,
為母線卷成兩個高均為
的圓柱(無底面,連接部分材料損失忽略不計).記這兩個圓柱的體積之和為
.
![]()
(1)將
表示成
的函數(shù)關系式,并寫出
的取值范圍;
(2)求兩個圓柱體積之和
的最大值.
【答案】(1)
.
(2)![]()
【解析】
(1)設半圓形鐵皮的半徑為r,自下而上兩個矩形卷成的圓柱的底面半徑分別為r1,r2,寫出y關于x的函數(shù)關系,并寫出x的取值范圍;
(2)利用導數(shù)判斷V(x)的單調(diào)性,得出V(x)的最大值.
(1)設半圓形鐵皮的半徑為
,自下而上兩個矩形卷成的圓柱的底面半徑分別為
,
.
因為半圓形鐵皮的面積為
,所以
,即
.
因為
,所以
,
同理
,即
.
所以卷成的兩個圓柱的體積之和
.
因為
,所以
的取值范圍是
.
(2)由
,得
,
令
,因為
,故
當
時,
;當
時,
,
所以
在
上為增函數(shù),在
上為減函數(shù),
所以當
時,
取得極大值,也是最大值.
因此
的最大值為
.
答:兩個圓柱體積之和
的最大值為
.
科目:高中數(shù)學 來源: 題型:
【題目】質(zhì)檢部門對某工廠甲、乙兩個車間生產(chǎn)的12個零件質(zhì)量進行檢測.甲、乙兩個車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過20克的為合格.
![]()
(1)從甲、乙兩車間分別隨機抽取2個零件,求甲車間至少一個零件合格且乙車間至少一個零件合格的概率;
(2)質(zhì)檢部門從甲車間8個零件中隨機抽取4件進行檢測,若至少2件合格,檢測即可通過,若至少3 件合格,檢測即為良好,求甲車間在這次檢測通過的條件下,獲得檢測良好的概率;
(3)若從甲、乙兩車間12個零件中隨機抽取2個零件,用
表示乙車間的零件個數(shù),求
的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
的定義域為
,其中
,
為自然對數(shù)的底數(shù).
(1)設
是函數(shù)
的導函數(shù),討論
的單調(diào)性;
(2)若關于
的方程
在
上有解,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
,拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點
,從
,
上分別取兩個點,將其坐標記錄于下表中:
| 3 | -2 | 4 |
|
|
| 0 | -4 |
|
(1)求
的標準方程;
(2)若直線
與橢圓
交于不同的兩點
,且線段
的垂直平分線過定點
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,已知圓
經(jīng)過拋物線
與坐標軸的三個交點.
(1)求圓
的方程;
(2)經(jīng)過點
的直線
與圓
相交于
,
兩點,若圓
在
,
兩點處的切線互相垂直,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[2018·江西聯(lián)考]交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為
元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
| 上一個年度未發(fā)生有責任道路交通事故 | 下浮10% |
| 上兩個年度未發(fā)生有責任道路交通事故 | 下浮20% |
| 上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% |
| 上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% |
| 上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% |
| 上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了80輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 |
|
|
|
|
| |
數(shù)量 | 20 | 10 | 10 | 20 | 15 | 5 |
以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,
.某同學家里有一輛該品牌車且車齡剛滿三年,記X為該品牌車在第四年續(xù)保時的費用,求X的分布列與數(shù)學期望值;(數(shù)學期望值保留到個位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設購進一輛事故車虧損4000元,一輛非事故車盈利8000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知
,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=![]()
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com