欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,四邊形ABCD中,AB⊥AD,AB+AD=4,CD=

(I)求證:平面PAB⊥平面PAD;

(II)設AB=AP.

    (i)若直線PB與平面PCD所成的角為,求線段AB的長;

    (ii)在線段AD上是否存在一個點G,使得點G到點P,B,C,D的距離都相等?說明理由。

解法一:

(I)因為平面ABCD,

平面ABCD,

所以,

所以平面PAD。

平面PAB,所以平面平面PAD。

(II)以A為坐標原點,建立空間直角坐標系

A— xyz(如圖)

 


在平面ABCD內(nèi),作CE//AB交AD于點E,則

中,DE=,

設AB=AP=t,則B(t,0,0),P(0,0,t)

由AB+AD=4,得AD=4-t,

所以

(i)設平面PCD的法向量為,

,得

,得平面PCD的一個法向量,

,故由直線PB與平面PCD所成的角為,得

解得(舍去,因為AD),所以

(ii)假設在線段AD上存在一個點G,使得點G到點P,B,C,D的距離都相等,

設G(0,m,0)(其中

,

,(2)

由(1)、(2)消去t,化簡得(3)

由于方程(3)沒有實數(shù)根,所以在線段AD上不存在一個點G,

使得點G到點P,C,D的距離都相等。

從而,在線段AD上不存在一個點G,

使得點G到點P,B,C,D的距離都相等。

解法二:

(I)同解法一。

(II)(i)以A為坐標原點,建立空間直角坐標系A—xyz(如圖)

 


在平面ABCD內(nèi),作CE//AB交AD于E,

在平面ABCD內(nèi),作CE//AB交AD于點E,則

中,DE=,

設AB=AP=t,則B(t,0,0),P(0,0,t)

由AB+AD=4,得AD=4-t,

所以,

 

 

 

 

 

 

 

 


設平面PCD的法向量為

,,得

,得平面PCD的一個法向量,

,故由直線PB與平面PCD所成的角為,得

解得(舍去,因為AD),

所以

(ii)假設在線段AD上存在一個點G,使得點G到點P,B,C,D的距離都相等,

由GC=CD,得,

從而,即

                                                               

 

 

 

 

 

 

 

 

 


中,

這與GB=GD矛盾。

所以在線段AD上不存在一個點G,使得點G到點B,C,D的距離都相等,

從而,在線段AD上不存在一個點G,使得點G到點P,B,C,D的距離都相等。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點.求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點F是PB中點.
(Ⅰ)若E為BC中點,證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點,證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設PC與AD的夾角為θ.
(1)求點A到平面PBD的距離;
(2)求θ的大;當平面ABCD內(nèi)有一個動點Q始終滿足PQ與AD的夾角為θ,求動點Q的軌跡方程.

查看答案和解析>>

同步練習冊答案