【題目】已知圓
,
為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)
在圓外,過點(diǎn)
作圓
的切線,設(shè)切點(diǎn)為
.
(1)若點(diǎn)
運(yùn)動(dòng)到
處,求此時(shí)切線
的方程;
(2)求滿足
的點(diǎn)
的軌跡方程.
【答案】(1)
或
;(2)
.
【解析】
試題分析:(1)把圓
的方程化為標(biāo)準(zhǔn)方程,得圓心坐標(biāo)和圓的半徑,再分直線
的斜率不存在時(shí)和直線
的斜率存在時(shí),兩種情況分別求解切線的方程;(2)設(shè)
,根據(jù)
,利用兩點(diǎn)間的距離公式,列出方程,即可求解點(diǎn)
的軌跡方程.
試題解析:(1)把圓
的方程化為標(biāo)準(zhǔn)方程為
,
∴圓心為
,半徑為2. ………………………………2分
①當(dāng)
的斜率不存在時(shí),
的方程為
滿足條件.…………4分
②當(dāng)
的斜率存在時(shí),設(shè)斜率為
,則
,
即
.………………………………6分
由題意,得
,得
.……………………6分
∴
的方程為
.
綜上得,滿足條件的切線
的方程為
,或
.…………8分
(2)設(shè)
,∵
,
∴
.…………………………10分
整理得
,
即點(diǎn)
的軌跡方程為
.……………………12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在(﹣1,1)上的奇函數(shù)f(x),在x∈(﹣1,0)時(shí),f(x)=2x+2﹣x.
(1)求f(x)在(﹣1,1)上的表達(dá)式;
(2)用定義證明f(x)在(﹣1,0)上是減函數(shù);
(3)若對于x∈(0,1)上的每一個(gè)值,不等式m2xf(x)<4x﹣1恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
.
(Ⅰ)當(dāng)
時(shí),求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間
上存在不相等的實(shí)數(shù)
,使
成立,求
的取值范圍;
(Ⅲ)若函數(shù)
有兩個(gè)不同的極值點(diǎn)
,
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)分類變量X與Y的一組數(shù)據(jù),由其列聯(lián)表計(jì)算得k≈4.523,則認(rèn)為“X與Y有關(guān)系”犯錯(cuò)誤的概率為( )
A. 95% B. 90% C. 5% D. 10%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(-3,-1)和(4,-6)在直線3x-2y-a=0的兩側(cè),則實(shí)數(shù)a的取值范圍為( )
A. (-7,24)
B. (-∞,-7)∪(24,+∞)
C. (-24,7)
D. (-∞,-24)∪(7,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識(shí)增強(qiáng)環(huán)保意識(shí),某校從理工類專業(yè)甲班抽取60人,從文史類乙班抽取50人參加環(huán)保知識(shí)測試.
(1)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷你是否有99%的把握認(rèn)為環(huán)保知識(shí)與專業(yè)有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
(2)為參加上級舉辦的環(huán)保知識(shí)競賽,學(xué)校舉辦預(yù)選賽,預(yù)選賽答卷滿分100分,優(yōu)秀的同學(xué)得60分以上通過預(yù)選,非優(yōu)秀的同學(xué)得80分以上通過預(yù)選,若每位同學(xué)得60分以上的概率為![]()
,得80分以上的概率為
,現(xiàn)已知甲班有3人參加預(yù)選賽,其中1人為優(yōu)秀學(xué)生,若隨機(jī)變量X表示甲班通過預(yù)選的人數(shù),
求X的分布列及期望E(X).
附:
, n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010[ | 0.005 |
k0 | 2.706 | 3.84 | 5.02 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A. 空間中不同三點(diǎn)確定一個(gè)平面
B. 空間中兩兩相交的三條直線確定一個(gè)平面
C. 一條直線和一個(gè)點(diǎn)能確定一個(gè)平面
D. 梯形一定是平面圖形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的通項(xiàng)公式
,數(shù)列
滿足
,
為數(shù)列
的前
項(xiàng)和。
(I)求
;
(II)若對任意的
不等式
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com