如圖所示,已知橢圓
的兩個(gè)焦點(diǎn)分別為
、
,且
到直線
的距離等于橢圓的短軸長.![]()
(Ⅰ) 求橢圓
的方程;
(Ⅱ) 若圓
的圓心為
(
),且經(jīng)過
、
,
是橢圓
上的動(dòng)點(diǎn)且在圓
外,過
作圓
的切線,切點(diǎn)為
,當(dāng)
的最大值為
時(shí),求
的值.
(Ⅰ)
;(Ⅱ)
.
解析試題分析:(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程,“先定位后定量”,由題知焦點(diǎn)在
軸,且
,由點(diǎn)到直線的距離求
,再由
求
,進(jìn)而寫出橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)圓
的圓心為
,半徑為
,連接
,則
,設(shè)點(diǎn)
,在
中,利用勾股定理并結(jié)合
,表示
,其中
,轉(zhuǎn)化為自變量為
的二次函數(shù)的最值問題處理.
試題解析:(Ⅰ)設(shè)橢圓的方程為
(
),依題意,
,所以
,又
,所以
,所以橢圓
的方程為
.
(Ⅱ) 設(shè)
(其中
), 圓
的方程為
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/68/e/fzpyd.png" style="vertical-align:middle;" />,
所以![]()
![]()
,當(dāng)
即
時(shí),當(dāng)
時(shí),
取得最大值,且
,解得
(舍去).
當(dāng)
即
時(shí),當(dāng)
時(shí),
取最大值,且
,解得
,又
,所以
.
綜上,當(dāng)
時(shí),
的最大值為
.
考點(diǎn):1、橢圓的標(biāo)準(zhǔn)方程;2、切線的性質(zhì);3、二次函數(shù)最值.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線
,點(diǎn)
,過
的直線
交拋物線
于
兩點(diǎn).
(1)若
,拋物線
的焦點(diǎn)與
中點(diǎn)的連線垂直于
軸,求直線
的方程;
(2)設(shè)
為小于零的常數(shù),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,求證:直線
過定點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓E的中心是原點(diǎn)O,其右焦點(diǎn)為F(2,0),過x軸上一點(diǎn)A(3,0)作直線
與橢圓E相交于P,Q兩點(diǎn),且
的最大值為
.![]()
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)
,過點(diǎn)P且平行于y軸的直線與橢圓E相交于另一點(diǎn)M,試問M,F,Q是否共線,若共線請(qǐng)證明;反之說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
兩焦點(diǎn)坐標(biāo)分別為
,
,一個(gè)頂點(diǎn)為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在斜率為
的直線
,使直線
與橢圓
交于不同的兩點(diǎn)
,滿足
. 若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系
中,已知拋物線
,設(shè)點(diǎn)
,
,
為拋物線
上的動(dòng)點(diǎn)(異于頂點(diǎn)),連結(jié)
并延長交拋物線
于點(diǎn)
,連結(jié)
、
并分別延長交拋物線
于點(diǎn)
、
,連結(jié)
,設(shè)
、
的斜率存在且分別為
、
.![]()
(1)若
,
,
,求
;
(2)是否存在與
無關(guān)的常數(shù)
,是的
恒成立,若存在,請(qǐng)將
用
、
表示出來;若不存在請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)
,
,動(dòng)點(diǎn)
滿足
.
(1)求動(dòng)點(diǎn)
的軌跡
的方程;
(2)在直線
:
上取一點(diǎn)
,過點(diǎn)
作軌跡
的兩條切線,切點(diǎn)分別為
.問:是否存在點(diǎn)
,使得直線
//
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知坐標(biāo)平面內(nèi)
:
,
:
.動(dòng)點(diǎn)P與
外切與
內(nèi)切.
(1)求動(dòng)圓心P的軌跡
的方程;
(2)若過D點(diǎn)的斜率為2的直線與曲線
交于兩點(diǎn)A、B,求AB的長;
(3)過D的動(dòng)直線與曲線
交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點(diǎn)的雙曲線的弦所在的直線方程;
(2)過點(diǎn)(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點(diǎn),且Q1,Q2兩點(diǎn)的中點(diǎn)為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com