(本題滿分12分)
如圖,斜率為1的直線
過拋物線
的焦點(diǎn)F,與拋物線交于兩點(diǎn)A,B。
(1)若|AB|=8,求拋物線
的方程;
(2)設(shè)C為拋物線弧AB上的動(dòng)點(diǎn)(不包括A,B兩點(diǎn)),求
的面積S的最大值;
(3)設(shè)P是拋物線
上異于A,B的任意一點(diǎn),直線PA,PB分別交拋物線的準(zhǔn)線于M,N兩點(diǎn),證明M,N兩點(diǎn)的縱坐標(biāo)之積為定值(僅與p有關(guān))![]()
(1)![]()
(2)![]()
(3)證明見解析。
解析解:設(shè)![]()
(1)由條件知直線![]()
由
消去y,得
…………1分
由題意,判別式
(不寫,不扣分)
由韋達(dá)定理,![]()
由拋物線的定義,![]()
從而
所求拋物的方程為
…………3分
(2)設(shè)
。由(1)易求得![]()
則
…………4分
點(diǎn)C到直線
的距離![]()
將原點(diǎn)O(0,0)的坐標(biāo)代入直線
的左邊,
得![]()
而點(diǎn)C與原點(diǎn)O們于直線
的同側(cè),由線性規(guī)劃的知識知![]()
因此
…………6分
由(1),|AB|=4p。![]()
![]()
由![]()
知當(dāng)
…………8分
(3)由(2),易得![]()
設(shè)
。
將
代入直線PA的方程![]()
得![]()
同理直線PB的方程為![]()
將
代入直線PA,PB的方程得
…………10分![]()
![]()
![]()
…………12分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
如圖所示的幾何體是由以正三角形
為底面的直棱柱被平面
所截而得.
,
為
的中點(diǎn).
![]()
(1)當(dāng)
時(shí),求平面
與平面
的夾角的余弦值;
(2)當(dāng)
為何值時(shí),在棱
上存在點(diǎn)
,使
平面
?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)如圖,在長方體
中,已知上下兩底面為正方形,且邊長均為1;側(cè)棱
,為
中點(diǎn),
為
中點(diǎn),
為
上一個(gè)動(dòng)點(diǎn).
![]()
(Ⅰ)確定
點(diǎn)的位置,使得
;
(Ⅱ)當(dāng)
時(shí),求二面角
的平
面角余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣西桂林中學(xué)高三7月月考試題理科數(shù)學(xué) 題型:解答題
(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).
![]()
⑴求異面直線PD與AE所成角的大;
⑵求證:EF⊥平面PBC ;
⑶求二面角F—PC—B的大。.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題
(本題滿分12分)
如圖3,在圓錐
中,已知
的直徑
的中點(diǎn).
(I)證明:![]()
(II)求直線和平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題
(本題滿分12分)
如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點(diǎn),SA=SB=SC。
(1)求證:BC⊥平面SDE;
(2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com