【題目】一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件有一些缺損.按不同轉(zhuǎn)速生產(chǎn)出來(lái)的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下表所示:
轉(zhuǎn)速x(轉(zhuǎn)/秒) | 16 | 4 | 12 | 8 |
每小時(shí)生產(chǎn)有缺損零件數(shù)y(個(gè)) | 11 | 9 | 8 | 5 |
(1)作出散點(diǎn)圖;
(2)如果y與x線性相關(guān),求出回歸直線方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么,機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?
【答案】(1)見解析(2)
=0.73x-0.875.(3)15
【解析】解:(1)根據(jù)表中的數(shù)據(jù)畫出散點(diǎn)圖如圖:
![]()
(2)設(shè)回歸直線方程為:
=bx+a,并列表如下:
i | 1 | 2 | 3 | 4 |
xi | 16 | 14 | 12 | 8 |
yi | 11 | 9 | 8 | 5 |
xiyi | 176 | 126 | 96 | 40 |
=12.5,
=8.25,
=660,
=438,
∴b=
≈0.73,
a=8.25-0.73×12.5=-0.875,
∴
=0.73x-0.875.
(3)令0.73x-0.875≤10,解得x≤14.9≈15.故機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在15轉(zhuǎn)/秒內(nèi).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有兩個(gè)分類變量x與y,其一組觀測(cè)值如下面的2×2列聯(lián)表所示:
y1 | y2 | |
x1 | a | 20-a |
x2 | 15-a | 30+a |
其中a,15-a均為大于5的整數(shù),則a取何值時(shí),在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為x與y之間有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正四面體
的頂點(diǎn)
分別在兩兩垂直的三條射線
上,在下列命題中,錯(cuò)誤的是( )
![]()
A. 四面體
是正三棱錐 B. 直線
與平面
相交 C. 異面直線
和
所成角是
D. 直線
與平面
所成的角的正弦值為![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,B=
.
(1)若a=3,b=
,求c的值;
(2)若f(A)=sinA(
cosA﹣sinA),a=
,求f(A)的最大值及此時(shí)△ABC的外接圓半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2013·湖北高考)四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程,分別得到以下四個(gè)結(jié)論:
①y與x負(fù)相關(guān)且
=2.347x-6.423;
②y與x負(fù)相關(guān)且
=-3.476x+5.648;
③y與x正相關(guān)且
=5.437x+8.493;
④y與x正相關(guān)且
=-4.326x-4.578.
其中一定不正確的結(jié)論的序號(hào)是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)
,
.
(Ⅰ)若
,設(shè)
,試證明
存在唯一零點(diǎn)
,并求
的最大值;
(Ⅱ)若關(guān)于
的不等式
的解集中有且只有兩個(gè)整數(shù),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】東莞市某高級(jí)中學(xué)在今年4月份安裝了一批空調(diào),關(guān)于這批空調(diào)的使用年限
(單位:年,
)和所支出的維護(hù)費(fèi)用
(單位:萬(wàn)元)廠家提供的統(tǒng)計(jì)資料如下:
使用年限 | 1 | 2 | 3 | 4 | 5 |
維護(hù)費(fèi)用 | 6 | 7 | 7.5 | 8 | 9 |
請(qǐng)根據(jù)以上數(shù)據(jù),用最小二乘法原理求出維護(hù)費(fèi)用
關(guān)于
的線性回歸方程
;
若規(guī)定當(dāng)維護(hù)費(fèi)用
超過(guò)13.1萬(wàn)元時(shí),該批空調(diào)必須報(bào)廢,試根據(jù)(1)的結(jié)論求該批空調(diào)使用年限的最大值.
參考公式:最小二乘估計(jì)線性回歸方程
中系數(shù)計(jì)算公式:
,
, ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐A﹣BCD中,E,F(xiàn),G,H分別是棱AB,BC,CD,DA的中點(diǎn),則當(dāng)AC,BD滿足條件 時(shí),四邊形EFGH為菱形.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出40個(gè)數(shù):1,2,4,7,11,16,…,要計(jì)算這40個(gè)數(shù)的和,如圖給出了該問(wèn)題的程序框圖,那么框圖①處和執(zhí)行框②處可分別填入( )
![]()
A.
;
B.
; ![]()
C.
;
D.
; ![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com