【題目】定義在
上的函數(shù)
同時(shí)滿足下列兩個(gè)條件:①對(duì)任意的
恒有
成立;②當(dāng)
時(shí),
.記函數(shù)
,若函數(shù)
恰有兩個(gè)零點(diǎn),則實(shí)數(shù)
的取值范圍是( )
A.
B.
C.
D.![]()
【答案】D
【解析】
根據(jù)題中的條件得到函數(shù)的解析式為:f(x)=﹣x+2b,x∈(b,2b],又因?yàn)?/span>f(x)=k(x﹣1)的函數(shù)圖象是過(guò)定點(diǎn)(1,0)的直線,再結(jié)合函數(shù)的圖象根據(jù)題意求出參數(shù)的范圍即可.
解:∵對(duì)任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且當(dāng)x∈(1,2]時(shí),f(x)=2﹣x,
∴f(x)=﹣x+2b,x∈(b,2b].
由題意得f(x)=k(x﹣1)的函數(shù)圖象是過(guò)定點(diǎn)(1,0)的直線,
如圖所示紅色的直線與線段AB相交即可(可以與B點(diǎn)重合但不能與A點(diǎn)重合),
![]()
∴可得k的范圍為:
,
故選:D.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線
的極坐標(biāo)方程是
,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為
軸的正半軸,且取相等的單位長(zhǎng)度,建立平面直角坐標(biāo)系,直線
的參數(shù)方程是
(
是參數(shù)),設(shè)點(diǎn)
.
(Ⅰ)將曲線
的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線
的參數(shù)方程化為普通方程;
(Ⅱ)設(shè)直線
與曲線
相交于
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
中,
,
,
,
,
.
![]()
(1)求證:平面
平面
;
(2)在線段
上是否存在點(diǎn)
,使得平面
與平面
所成銳二面角為
?若存在,求
的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
是圓
上任意一點(diǎn),過(guò)點(diǎn)
作
軸于點(diǎn)
,延長(zhǎng)
到點(diǎn)
,使
.
(1)求點(diǎn)M的軌跡E的方程;
(2)過(guò)點(diǎn)
作圓O的切線l,交(1)中曲線E于
兩點(diǎn),求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(
為參數(shù)),直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,過(guò)極點(diǎn)
的射線與曲線
相交于不同于極點(diǎn)的點(diǎn)
,且點(diǎn)
的極坐標(biāo)為
,其中
.
(1)求
的值;
(2)若射線
與直線
相交于點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)又本
與橢圓
交于
、
兩個(gè)不同點(diǎn),且
的面積
,其中
為坐標(biāo)原點(diǎn).
(1)證明
和
均為定值;
(2)設(shè)線段
的中點(diǎn)為
,求
的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù),
),以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線
的直角坐標(biāo)方程及直線
在
軸正半軸及
軸正半軸截距相等時(shí)的直角坐標(biāo)方程;
(2)若
,設(shè)直線
與曲線
交于不同的兩點(diǎn)
、
,點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,則下列判斷正確的是( )
A.函數(shù)
的最小正周期為
,在
上單調(diào)遞增
B.函數(shù)
的最小正周期為
,在
上單調(diào)遞增
C.函數(shù)
的最小正周期為
,在
上單調(diào)遞增
D.函數(shù)
的最小正周期為
,在
上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為
(t為參數(shù)),直線l2的參數(shù)方程為
.設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)
=0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com