【題目】已知橢圓
的左頂點(diǎn)為
,左、右焦點(diǎn)分別為
,離心率為
,
是橢圓上的一個(gè)動(dòng)點(diǎn)(不與左、右頂點(diǎn)重合),且
的周長(zhǎng)為6,點(diǎn)
關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為
,直線(xiàn)
交于點(diǎn)
.
![]()
(1)求橢圓方程;
(2)若直線(xiàn)
與橢圓交于另一點(diǎn)
,且
,求點(diǎn)
的坐標(biāo).
【答案】(1)
;(2)
或![]()
【解析】
(1)根據(jù)
的周長(zhǎng)為
,結(jié)合離心率,求出
,即可求出方程;
(2)設(shè)
,則
,求出直線(xiàn)
方程,若
斜率不存在,求出
坐標(biāo),直接驗(yàn)證是否滿(mǎn)足題意,若
斜率存在,求出其方程,與直線(xiàn)
方程聯(lián)立,求出點(diǎn)
坐標(biāo),根據(jù)
和
三點(diǎn)共線(xiàn),將點(diǎn)
坐標(biāo)用
表示,
坐標(biāo)代入橢圓方程,即可求解.
(1)因?yàn)闄E圓的離心率為
,
的周長(zhǎng)為6,
設(shè)橢圓的焦距為
,則![]()
解得
,
,
,
所以橢圓方程為
.
(2)設(shè)
,則
,且
,
所以
的方程為
①.
若
,則
的方程為
②,由對(duì)稱(chēng)性不妨令點(diǎn)
在
軸上方,
則
,
,聯(lián)立①,②解得
即
.
的方程為
,代入橢圓方程得
,整理得
,
或
,
.
,不符合條件.
若
,則
的方程為
,
即
③.
聯(lián)立①,③可解得
所以
.
因?yàn)?/span>
,設(shè)![]()
所以
,即
.
又因?yàn)?/span>
位于
軸異側(cè),所以
.
因?yàn)?/span>
三點(diǎn)共線(xiàn),即
應(yīng)與
共線(xiàn),
![]()
所以
,即
,
所以
,又
,
所以
,解得
,所以
,
所以點(diǎn)
的坐標(biāo)為
或
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,已知橢圓
(
),圓
(
),若圓
的一條切線(xiàn)
與橢圓
相交于
兩點(diǎn).
(1)當(dāng)
,
時(shí),若點(diǎn)
都在坐標(biāo)軸的正半軸上,求橢圓
的方程;
(2)若以
為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)
,探究
是否滿(mǎn)足
,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)
的焦點(diǎn)到準(zhǔn)線(xiàn)的距離為
,直線(xiàn)
與拋物線(xiàn)
交于
,
兩點(diǎn),過(guò)這兩點(diǎn)分別作拋物線(xiàn)
的切線(xiàn),且這兩條切線(xiàn)相交于點(diǎn)
.
(1)若點(diǎn)
的坐標(biāo)為
,求
的值;
(2)設(shè)線(xiàn)段
的中點(diǎn)為
,過(guò)
的直線(xiàn)
與線(xiàn)段
為直徑的圓相切,切點(diǎn)為
,且直線(xiàn)
與拋物線(xiàn)
交于
,
兩點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,曲線(xiàn)
的參數(shù)方程是
(
是參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)
的極坐標(biāo)方程為
,其傾斜角為
.
(Ⅰ)證明直線(xiàn)
恒過(guò)定點(diǎn)
,并寫(xiě)出直線(xiàn)
的參數(shù)方程;
(Ⅱ)在(Ⅰ)的條件下,若直線(xiàn)
與曲線(xiàn)
交于
,
兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
滿(mǎn)足
,
.
(1)求
;
(2)若
,證明:數(shù)列
中的任意三項(xiàng)不可能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)
上一點(diǎn)
到焦點(diǎn)
的距離
.
(1)求拋物線(xiàn)
的方程;
(2)過(guò)點(diǎn)
引圓
的兩條切線(xiàn)
,切線(xiàn)
與拋物線(xiàn)
的另一交點(diǎn)分別為
,線(xiàn)段
中點(diǎn)的橫坐標(biāo)記為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直四棱柱
的底面是直角梯形,
,
,
,
分別是棱
,
上的動(dòng)點(diǎn),且
,
,
.
![]()
(1)證明:無(wú)論點(diǎn)
怎樣運(yùn)動(dòng),四邊形
都為矩形;
(2)當(dāng)
時(shí),求幾何體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)![]()
(1)若函數(shù)
在
處取得極值1,證明:![]()
(2)若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓
的短軸長(zhǎng)為4,離心率為
,斜率不為0的直線(xiàn)
與橢圓相交于
,
兩點(diǎn)(
,
異于橢圓的頂點(diǎn)),且以
為直徑的圓過(guò)橢圓的右頂點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線(xiàn)
是否過(guò)定點(diǎn),如果過(guò)定點(diǎn),求出該定點(diǎn)的坐標(biāo);如果不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com