欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

【題目】如圖,在四棱錐中,⊥平面,底面為梯形,, ,,,的中點

Ⅰ)證明:∥平面;

(Ⅱ)求直線與平面所成角的正弦值

【答案】(1)見解析(2)

【解析】試題分析】(I)的中點,連接通過證明四邊形為平行四邊形,由此證得,進而證明平面.(II)為坐標原點建立空間直角坐標系,通過計算平面的法向量與直線的方向向量來計算線面角的正弦值.

試題解析】

(Ⅰ)證明:設(shè)FPD的中點,連接EF,FA

因為EF的中位線,所以EFCD,且EF=

ABCD,AB=2,所以ABEF,故四邊形ABEF為平行四邊形,所以BEAF

AF平面PAD,BE平面PAD,所以BE∥平面PAD

(Ⅱ)解:設(shè)GAB的中點,因為AD=AB,,所以為等邊三角形,故DGAB ;因為ABCD所以DGDC;又PD平面ABCD,所以PD,DGCD兩兩垂直

D為坐標原點,x軸、軸建立空間直角坐標系,則, ,,

設(shè)為平面DBE的一個法向量,則 ,即 ,

,則

,所以,

即直線PB與平面BDE所成角的正弦值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的離心率為,過左焦點且斜率為的直線交橢圓兩點,線段的中點為,直線交橢圓兩點.

(1)求橢圓的方程;

(2)求證:點在直線上;

(3)是否存在實數(shù),使得?若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】屠呦呦,第一位獲得諾貝爾科學(xué)獎項的中國本土科學(xué)家,在2015年獲得諾貝爾生理學(xué)或醫(yī)學(xué)獎,理由是她發(fā)現(xiàn)了青蒿素.這種藥品可以有效降低瘧疾患者的死亡率,從青篙中提取的青篙素抗瘧性超強,幾乎達到100%.據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.

(Ⅰ)寫出服藥一次后yt之間的函數(shù)關(guān)系式

(Ⅱ)據(jù)進一步測定:每毫升血液中含藥量不少于微克時,治療有效,求服藥一次后治療有效的時間是多長?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中),記函數(shù)的導(dǎo)函數(shù)為

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)是否存在實數(shù),使得對任意正實數(shù)恒成立?若存在,求出滿足條件的實數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018廣東深圳市高三第一次調(diào)研考試已知函數(shù)

I討論函數(shù)的單調(diào)性;

II時,關(guān)于的不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標系的原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為

(Ⅰ)求曲線的直角坐標方程及曲線上的動點到坐標原點的距離的最大值;

(Ⅱ)若曲線與曲線相交于兩點,且與軸相交于點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,平行于軸且過點的入射光線被直線反射,反射光線軸于點,圓過點,且與、相切.

(Ⅰ)求所在直線的方程;

(Ⅱ)求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù),).

(1)若函數(shù)僅有一個極值點,求實數(shù)的取值范圍;

(2)證明:當時,有兩個零點).且滿足.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,根據(jù)經(jīng)驗,其次品率與日產(chǎn)量 (萬件)之間滿足關(guān)系, (其中為常數(shù),且,已知每生產(chǎn)1萬件合格的產(chǎn)品以盈利2萬元,但每生產(chǎn)1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產(chǎn)量, 如表示每生產(chǎn)10件產(chǎn)品,有1件次品,其余為合格品).

1)試將生產(chǎn)這種產(chǎn)品每天的盈利額 (萬元)表示為日產(chǎn)量 (萬件)的函數(shù);

2)當日產(chǎn)量為多少時,可獲得最大利潤?

查看答案和解析>>

同步練習冊答案