【題目】已知圓C過點
,且與圓
外切于點
,過點
作圓C的兩條切線PM,PN,切點為M,N.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)試問直線MN是否恒過定點?若過定點,請求出定點坐標(biāo).
【答案】(1)
.(2)直線MN過定點
.
【解析】
(1)由題意可知圓C的圓心在y軸上,設(shè)半徑為r,則圓心
,再由圓C過點
,代入解得
,即可得到圓的方程.
(2)由題意可得
,則M,N,P,C四點共圓,且該圓以PC為直徑,圓心坐標(biāo)為
,即可得到圓的方程
,再求出兩圓的公共弦的方程即可得解.
解:(1)由題意可知圓C的圓心在y軸上,設(shè)半徑為r,則圓心
,
故圓C的標(biāo)準(zhǔn)方程為
.
因為圓C過點
,所以
,解得
,
故圓C的標(biāo)準(zhǔn)方程為
.
(2)由題意可得
,則M,N,P,C四點共圓,且該圓以PC為直徑,圓心坐標(biāo)為
,
故該圓的方程是
,即
.
因為圓C的方程為
,所以公共弦MN所在直線方程為
,
整理得
.
令
解得![]()
故直線MN過定點
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
).
(1)若不等式
的解集為
,求
的取值范圍;
(2)當(dāng)
時,解不等式
;
(3)若不等式
的解集為
,若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)討論函數(shù)
的單調(diào)性;
(Ⅱ)若對任意
,
≥0恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的
,
,
三個不同車間生產(chǎn)同一產(chǎn)品的數(shù)量(單位:件)如下表所示.質(zhì)檢人員用分層抽樣的方法從這些產(chǎn)品中共抽取6件樣品進行檢測:
車間 |
|
|
|
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自
,
,
各車間產(chǎn)品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件進行進一步檢測,求這2件產(chǎn)品來自相同車間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 有兩個平面互相平行,其余各面都是平行四邊形的多面體是棱柱
B. 四棱錐的四個側(cè)面都可以是直角三角形
C. 有兩個平面互相平行,其余各面都是梯形的多面體是棱臺
D. 棱臺的各側(cè)棱延長后不一定交于一點
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x﹣cos2x﹣2
sinxcosx(x∈R).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[
,
]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】母線長為
,底面半徑為
的圓錐內(nèi)有一球
,與圓錐的側(cè)面、底面都相切,現(xiàn)放入一些小球,小球與圓錐底面、側(cè)面、球
都相切,這樣的小球最多可放入__________個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體
中,過對角線
的一個平面交
于點
,交
于
.
![]()
①四邊形
一定是平行四邊形;
②四邊形
有可能是正方形;
③四邊形
在底面
內(nèi)的投影一定是正方形;
④四邊形
有可能垂直于平面
.
以上結(jié)論正確的為_______________.(寫出所有正確結(jié)論的編號)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com