(本小題滿分13分)如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,A點在PD上的射影為G
點,E點在AB上,平面PEC⊥平面PDC.
(Ⅰ)求證:AG∥平面PEC;
(Ⅱ)求AE的長;
(Ⅲ)求二面角E—PC—A的正弦值.
解(Ⅰ)證明:∵CD⊥AD,CD⊥PA
∴CD⊥平面PAD ∴CD⊥AG,
又PD⊥AG
∴AG⊥平面PCD …………2分
作EF⊥PC于F,因面PEC⊥面PCD
∴EF⊥平面PCD ∴EF∥AG
又AG
面PEC,EF
面PEC,
∴AG∥平面PEC ………………4分
(Ⅱ)由(Ⅰ)知A、E、F、G四點共面,又AE∥CD ∴ AE∥平面PCD
∴AE∥GF ∴四邊形AEFG為平行四邊形,∴AE=GF …………5分
∵PA=3,AB=4 ∴PD=5,AG=
,
又PA2=PG•PD ∴PG
……………………6分
又
∴
∴
………………8分
(Ⅲ)過E作EO⊥AC于O點,易知EO⊥平面PAC,
又EF⊥PC,∴OF⊥PC∴∠EFO即為二面角E—PC—A的平面角 ……10分
, 又EF=AG ![]()
∴
………………13分
科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數![]()
.
(1)求函數
的最小正周期和最大值;
(2)在給出的直角坐標系中,畫出函數
在區(qū)間
上的圖象.
(3)設0<x<
,且方程
有兩個不同的實數根,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題
(本小題滿分13分)已知定義域為
的函數
是奇函數.
(1)求
的值;(2)判斷函數
的單調性;
(3)若對任意的
,不等式恒成立
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱
的所有棱長都為2,
為
的中點。
(Ⅰ)求證:
∥平面
;
(Ⅱ)求異面直線
與
所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題
(本小題滿分13分)
已知
為銳角,且
,函數
,數列{
}的首項
.
(1) 求函數
的表達式;
(2)在
中,若
A=2
,
,BC=2,求
的面積
(3) 求數列
的前
項和![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com