設(shè)數(shù)列{an}的前n項(xiàng)和為Sn=2n2,{bn}為等比數(shù)列,且a1=b1,b2(a2-a1)=b1.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;( 6分)
(2)設(shè)cn=
,求數(shù)列{cn}的前n項(xiàng)和Tn.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}滿足a1=2,an+1=an-
.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=nan·2n,求數(shù)列{bn}的前n項(xiàng)和Sn
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知數(shù)列{an}、{bn}分別是首項(xiàng)均為2的各項(xiàng)均為正數(shù)的等比數(shù)列和等差數(shù)列,且![]()
(I) 求數(shù)列{an}、{bn}的通項(xiàng)公式;
(II )求使
<0.001成立的最小的n值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分) 已知數(shù)列
的前
項(xiàng)和為
,且![]()
,等差數(shù)列
中,
,
。
(1)求數(shù)列
的通項(xiàng)
和
;
(2) 設(shè)
,求數(shù)列
的前
項(xiàng)和
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知函數(shù)
,數(shù)列
滿足![]()
(1)求數(shù)列
的通項(xiàng)公式;(2)記
,求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,an=
+
(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=( )
| A.n-1 | B.n | C.2n-1 | D.2n |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com