如圖,在四邊形
中,對(duì)角線
于
,
,
為
的重心,過(guò)點(diǎn)
的直線
分別交
于
且
‖
,沿
將
折起,沿
將
折起,
正好重合于
. ![]()
(Ⅰ) 求證:平面
平面
;
(Ⅱ)求平面
與平面
夾角的大小.
(1)對(duì)于面面垂直的證明,主要是通過(guò)判定定理來(lái)分析得到,注意到
平面
是解題的關(guān)鍵。
(2)![]()
解析試題分析:解:(Ⅰ) 由題知:
![]()
又
平面![]()
平面
平面
平面
6分
(Ⅱ) 如圖建立空間直角坐標(biāo)系![]()
![]()
![]()
平面![]()
平面
的一個(gè)法向量為
8分
又
![]()
設(shè)平面
的一個(gè)法向量為![]()
![]()
取
![]()
平面
與平面
的夾角為
12分
考點(diǎn):空間中的面面位置關(guān)系
點(diǎn)評(píng):對(duì)于空間中的垂直的證明主要是熟練的運(yùn)用判定定理和性質(zhì)定理來(lái)證明,同時(shí)二面角的求解,一般采用向量法來(lái)得到,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且
G是EF的中
點(diǎn).![]()
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角梯形PBCD中,
,A為PD的中點(diǎn),如下左圖。將
沿AB折到
的位置,使
,點(diǎn)E在SD上,且
,如下圖。
(1)求證:
平面ABCD;
(2)求二面角E—AC—D的正切值.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD
平面ABCD,EF∥AB, AB=2EF=2AD=4,
.![]()
(Ⅰ)求多面體EF-ABCD的體積;
(Ⅱ)求直線BD與平面BCF所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐
中,
⊥平面
,
為
的中點(diǎn),
為
的中點(diǎn),底面
是菱形,對(duì)角線
,
交于點(diǎn)
.![]()
求證:(1)平面
平面
;
(2)平面
⊥平面
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點(diǎn)。![]()
(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,
ABC=60
,EC
面ABCD,F(xiàn)A
面ABCD,G為BF的中點(diǎn),若EG//面ABCD.![]()
(1)求證:EG
面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com