已知f(1-x)=1+x,則f(x)的表達式為
A.f(x)=2-x
B.f(x)=2+x
C.f(x)=x-2
D.f(x)=x+1
科目:高中數(shù)學 來源:湖北省荊州中學2008-2009學年上學期高一期中考試(數(shù)學文) 題型:044
已知定義域為[0,1]的函數(shù)f(x)同時滿足以下三個條件:
Ⅰ.對任意的x∈[0,1],總有f(x)≥0;
Ⅱ.f(1)=1;
Ⅲ.若x1≥0,x2≥0,且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立.
則稱f(x)為“友誼函數(shù)”,請解答下列各題:
(1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
查看答案和解析>>
科目:高中數(shù)學 來源:北京市石景山區(qū)2012屆高三上學期期末考試數(shù)學理科試題 題型:044
已知f(x)=ax-lnx,a∈R.
(Ⅰ)當a=2時,求曲線f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若f(x)在x=1處有極值,求f(x)的單調遞增區(qū)間;
(Ⅲ)是否存在實數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東省高一期中考試文科數(shù)學試卷A卷(解析版) 題型:解答題
已知函數(shù)f(x)(x∈R)滿足f(x)=
,a≠0,f(1)=1,且使f(x)=2x成立的實數(shù)x只有一個.
(1)求函數(shù)f(x)的表達式;
(2)若數(shù)列{an}滿足a1=
,an+1=f(an),bn=
-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=
,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即
=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=
.…………………………………………4分
(2)an+1=f(an)=
(n∈N*),bn=
-1, ∴
=
=
=
,
∴{bn}為等比數(shù)列,q=
.又∵a1=
,∴b1=
-1=
,
bn=b1qn-1=![]()
n-1=
n(n∈N*).……………………………9分
(3)證明:∵anbn=an
=1-an=1-
=
,
∴a1b1+a2b2+…+anbn=
+
+…+
<
+
+…+![]()
=
=1-
<1(n∈N*).
查看答案和解析>>
科目:高中數(shù)學 來源:2010年吉林省高二下學期期中考試數(shù)學(理) 題型:解答題
(本小題滿分12分)
已知函數(shù)f (x)=ln(1+x)+a (x+1)2 (a為常數(shù)).
(Ⅰ)若函數(shù)f (x)在x=1處有極值,判斷該極值是極大值還是極小值;
(Ⅱ)對滿足條件a≤
的任意一個a,方程f (x)=0在區(qū)間(0,3)內實數(shù)根的個數(shù)是多少?
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com