【題目】已知向量a=(sin x,mcos x),b=(3,-1).
(1)若a∥b,且m=1,求2sin2x-3cos2x的值;
(2)若函數(shù)f(x)=a·b的圖象關(guān)于直線
對(duì)稱,求函數(shù)f(2x)在
上的值域.
【答案】(1)
;(2)
.
【解析】試題分析:
(1)由題意
,可求解
,再根據(jù)
,即可求解
在
的值域.
(2)由
,關(guān)于
對(duì)稱,求得
,進(jìn)而得到函數(shù)
的解析式,即可求解函數(shù)
試題解析:
(1)當(dāng)m=1時(shí),a=(sin x,cos x),又b=(3,-1),
且a∥b.
∴-sin x-3cos x=0,即tan x=-3,
∵2sin2x-3cos2x=
=
=
=
,
∴2sin2x-3cos2x=
.
(2)∵f(x)=a·b=3sin x-mcos x的圖象關(guān)于直線
x=
對(duì)稱,
∴f
=f
,即f
=f
,
即3=
+
m,得m=
,
則f(x)=2![]()
=2
sin
,
∴f(2x)=2
sin
,
∵x∈
,∴2x-
∈
,
∴當(dāng)x=
時(shí),f(2x)取最大值為2
;當(dāng)x=
時(shí),f(2x)取最小值為-
.
即函數(shù)f(2x)在
上的值域?yàn)?/span>[-
,2
].
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|ax-2|.
(1)當(dāng)a=2時(shí),解不等式f(x)>x+1;
(2)若關(guān)于x的不等式f(x)+f(-x)<
有實(shí)數(shù)解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·洛陽(yáng)市統(tǒng)考)已知數(shù)列{an}的前n項(xiàng)和為Sn,an≠0,a1=1,且2anan+1=4Sn-3(n∈N*).
(1)求a2的值并證明:an+2-an=2;
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知橢圓C:
(a>b>0)的左、右焦點(diǎn)分別為F1,F2,離心率為
,直線y=x+b截得橢圓C的弦長(zhǎng)為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)(m,0)作圓x2+y2=1的切線,交橢圓C于點(diǎn)A,B,求|AB|的最大值,并求取得最大值時(shí)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:
(a>b>0)的離心率為
,焦距為2c,且c,
,2成等比數(shù)列.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)點(diǎn)B坐標(biāo)為(0,
),問(wèn)是否存在過(guò)點(diǎn)B的直線l交橢圓C于M,N兩點(diǎn),且滿足
(O為坐標(biāo)原點(diǎn))?若存在,求出此時(shí)直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系
中,曲線
的參數(shù)方程為
(其中
為參數(shù)),以
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
(其中
為常數(shù)).
(1)若直線
與曲線
恰好有一個(gè)公共點(diǎn),求實(shí)數(shù)
的值;
(2)若
,求直線
被曲線
截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
(α為參數(shù)),直線l的參數(shù)方程為
(t為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,過(guò)極點(diǎn)O的射線與曲線C相交于不同于極點(diǎn)的點(diǎn)A,且點(diǎn)A的極坐標(biāo)為(2
,θ),其中θ∈
.
(1)求θ的值;
(2)若射線OA與直線l相交于點(diǎn)B,求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=a
-2ln x(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求曲線f(x)在x=2處的切線方程;
(Ⅱ)若a>
,且m,n分別為f(x)的極大值和極小值,S=m-n,求證:S<
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知
.
(1)求C;
(2)若c=
,△ABC的面積為
,求△ABC的周長(zhǎng).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com