(本小題滿分12分)
如圖橢圓
的上頂點為A,左頂點為B, F為右焦點, 過F作平行與AB的直線交橢圓于C、D兩點. 作平行四邊形OCED, E恰在橢圓上。
(1)求橢圓的離心率;
(2)若平行四邊形OCED的面積為
, 求橢圓的方程.
![]()
(1)
;(2)![]()
【解析】
試題分析:(1) ∵焦點為F(c, 0), AB斜率為
, 故CD方程為y=
(x-c). 于橢圓聯(lián)立后消去y得2x2-2cx-b2=0. ∵CD的中點為G(
), 點E(c, -
)在橢圓上,
∴將E(c,
-
)代入橢圓方程并整理得2c2=a2,
∴e =
.
(2)由(Ⅰ)知CD的方程為y=
(x-c), b=c, a=
c.
與橢圓聯(lián)立消去y得2x2-2cx-c2=0.
∵平行四邊形OCED的面積為S=c|yC-yD|=
c![]()
=
c
, ∴c=
, a=2, b=
. 故橢圓方程為
。
考點:本題考查橢圓的簡單性質。
點評:求橢圓的離心率是常見題型,其主要思路是:找出a、b、c的一個關系式即可。此題就是根據點斜式表示出直線CD的方程,代入橢圓方程,進而可表示出CD的中點的坐標,則E點的坐標可得,代入橢圓方程即可求得a、b和c的關系式求得離心率e.
科目:高中數(shù)學 來源: 題型:
| 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的
、
、
.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com