已知函數(shù)f(x)=sinx,g(x)=mx-
(m為實(shí)數(shù)).
(1)求曲線y=f(x)在點(diǎn)P(
),f(
)處的切線方程;
(2)求函數(shù)g(x)的單調(diào)遞減區(qū)間;
(3)若m=1,證明:當(dāng)x>0時(shí),f(x)<g(x)+
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
).
⑴ 若函數(shù)
的圖象在點(diǎn)
處的切線的傾斜角為
,求
在
上的最小值;
⑵ 若存在
,使
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)f(x)是定義在區(qū)間(1,+∞)上的函數(shù),其導(dǎo)函數(shù)為f′(x).如果存在實(shí)數(shù)a和函數(shù)h(x),其中h(x)對(duì)任意的x∈(1,+∞)都有h(x)>0,使得f′(x)=h(x)(x2-ax+1),則稱函數(shù)f(x)具有性質(zhì)P(a).
(1)設(shè)函數(shù)f(x)=ln x+
(x>1),其中b為實(shí)數(shù).
①求證:函數(shù)f(x)具有性質(zhì)P(b);
②求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知函數(shù)g(x)具有性質(zhì)P(2).給定x1,x2∈(1,+∞),x1<x2,設(shè)m為實(shí)數(shù),α=mx1+(1-m)x2,β=(1-m)x1+mx2,且α>1,β>1,若|g(α)-g(β)|<|g(x1)-g(x2)|,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知二次函數(shù)
的圖像過點(diǎn)
和
,直線
,直線
(其中
,
為常數(shù));若直線
與函數(shù)
的圖像以及直線
與函數(shù)
以及的圖像所圍成的封閉圖形如陰影所示.
(1)求
;
(2)求陰影面積
關(guān)于
的函數(shù)
的解析式;
(3)若過點(diǎn)
可作曲線
的三條切線,求實(shí)數(shù)
的取值范圍.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(
R),
為其導(dǎo)函數(shù),且
時(shí)
有極小值
.
(1)求
的單調(diào)遞減區(qū)間;
(2)若
,
,當(dāng)
時(shí),對(duì)于任意x,
和
的值至少有一個(gè)是正數(shù),求實(shí)數(shù)m的取值范圍;
(3)若不等式
(
為正整數(shù))對(duì)任意正實(shí)數(shù)
恒成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
.
(1)當(dāng)
時(shí),求
的極值;
(2)若
對(duì)
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
,
為
的導(dǎo)函數(shù)。 (1)求函數(shù)
的單調(diào)遞減區(qū)間;
(2)若對(duì)一切的實(shí)數(shù)
,有
成立,求
的取值范圍;
(3)當(dāng)
時(shí),在曲線
上是否存在兩點(diǎn)
,使得曲線在
兩點(diǎn)處的切線均與直線
交于同一點(diǎn)?若存在,求出交點(diǎn)縱坐標(biāo)的最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com