如圖,平面
平面
,四邊形
為矩形,
.
為
的中點(diǎn),
.![]()
(1)求證:
;
(2)若
與平面
所成的角為
,求二面角
的余弦值.
(1)詳見解析;(2)
.
解析試題分析:(1)連接
,要證
,只需證明
面
,只需證明
, 由已知面面垂直,易證
,所以
,
面
,得到
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/6/egm73.png" style="vertical-align:middle;" />,易證
,所以
面
,得
,得證
面
,即證
;(2)設(shè)
由(1)法一:知
,
為等邊三角形,設(shè)
,則
,
分別為
,
的中點(diǎn),
也是等邊三角形.取
的中點(diǎn)
,連結(jié)
,
,則
,
,
所以
為二面角
的平面角,然后用余弦定理計(jì)算.法二:如圖建立空間直角坐標(biāo)系,分別計(jì)算兩個平面的法向量,利用公式
,根據(jù)實(shí)際圖形為鈍二面角.
試題解析:如圖:![]()
(1)證明:連結(jié)
,因
,
是
的中點(diǎn),
故
.
又因平面
平面
,
故
平面
, 2分
于是
.
又
,
所以
平面
,
所以
, 4分
又因
,
故
平面
,
所以
. 6分
(2)解法一:由(I),得
.不妨設(shè)
,
. 7分
因
為直線
與平面
所成的角,
故
,
所以
,
為等邊三角形. 9分
設(shè)
,則
,
分別為
,
的中點(diǎn),
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點(diǎn).![]()
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2.又AC=1,∠ACB=120°,AB⊥PC,直線AM與直線PC所成的角為60°.![]()
(1)求證:PC⊥AC;
(2)求二面角M﹣AC﹣B的余弦值;
(3)求點(diǎn)B到平面MAC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體
中,
,點(diǎn)
是棱
上的一個動點(diǎn).![]()
(1)證明:
;
(2)當(dāng)
為
的中點(diǎn)時(shí),求點(diǎn)
到面
的距離;
(3)線段
的長為何值時(shí),二面角
的大小為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐
中,底面
是邊長為2的正方形,側(cè)面
底面
,且
為等腰直角三角形,
,
、
分別為
、
的中點(diǎn).![]()
(1)求證:
//平面
;
(2)若線段
中點(diǎn)為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知
、
、
為不在同一直線上的三點(diǎn),且
,
.![]()
(1)求證:平面
//平面
;
(2)若
平面
,且
,
,
,求證:
平面
;
(3)在(2)的條件下,設(shè)點(diǎn)
為
上的動點(diǎn),求當(dāng)
取得最小值時(shí)
的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com