分析 由f(x)為奇函數(shù)便有f(-x)=-f(x),即得到$lo{g}_{2}(-2x+\sqrt{4{x}^{2}+3t})$=$-lo{g}_{2}(2x+\sqrt{4{x}^{2}+3t})$,分子有理化并進(jìn)行對數(shù)的運(yùn)算便可得到$lo{g}_{2}(3t)-lo{g}_{2}(2x+\sqrt{4{x}^{2}+3t})$=$-lo{g}_{2}(2x+\sqrt{4{x}^{2}+3t})$,這樣便可得出3t=1,從而求出實數(shù)t的值.
解答 解:f(x)為奇函數(shù);
∴f(-x)=-f(x);
即$lo{g}_{2}(-2x+\sqrt{4{x}^{2}+3t})=lo{g}_{2}\frac{3t}{2x+\sqrt{4{x}^{2}+3t}}$=$lo{g}_{2}3t-lo{g}_{2}(2x+\sqrt{4{x}^{2}+3t})=-lo{g}_{2}(2x+\sqrt{4{x}^{2}+3t})$;
∴l(xiāng)og2(3t)=0;
∴3t=1;
∴$t=\frac{1}{3}$.
故答案為:$\frac{1}{3}$.
點評 本題考查奇函數(shù)的定義,分子有理化和平方差公式,以及對數(shù)的運(yùn)算.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (4,+∞) | B. | [0,$\frac{1}{2}$] | C. | ($\frac{1}{2}$,4] | D. | (1,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 93,91 | B. | 86,93 | C. | 93,92 | D. | 86,91 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 完成時間 | 頻率 |
| [20,25) | 0.2 |
| [25,30) | 0.5 |
| [30,35) | 0.2 |
| [35,40) | 0.1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com