【題目】設(shè)m,n是兩條不同的直線,α,β是兩個不重合的平面,給定下列四個命題,其中為真命題的是( ) ①
;②
;
③
;④
.
A.①和②
B.②和③
C.③和④
D.①和④
【答案】B
【解析】解:①為假命題,因為由線面垂直的判定定理,要得m⊥α,需要m垂直α內(nèi)的兩條相交直線,只有m⊥n,不成立.排除A、D,②為面面垂直的判定定理,正確.故選B.④中,m∥n或m與n異面. 故選B.
【考點精析】解答此題的關(guān)鍵在于理解四種命題的真假關(guān)系的相關(guān)知識,掌握一個命題的真假與其他三個命題的真假有如下三條關(guān)系:(原命題 逆否命題)①、原命題為真,它的逆命題不一定為真;②、原命題為真,它的否命題不一定為真;③、原命題為真,它的逆否命題一定為真,以及對平面與平面垂直的性質(zhì)的理解,了解兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(2x﹣1)的定義域為[﹣1,4],則函數(shù)f(x)的定義域為( 。
A.(﹣3,7]
B.[﹣3,7]
C.(0,
]
D.[0,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線
(其中
為參數(shù),
為傾斜角).以坐標(biāo)原點
為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求
的直角坐標(biāo)方程,并求
的焦點
的直角坐標(biāo);
(2)已知點
,若直線
與
相交于
兩點,且
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的函數(shù),滿足f(x)=﹣f(﹣x),且當(dāng)x<0時,f(x)=x
,則f(9)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點
作一直線與拋物線
交于
兩點,點
是拋物線
上到直線
:
的距離最小的點,直線
與直線
交于點
.
![]()
(Ⅰ)求點
的坐標(biāo);
(Ⅱ)求證:直線
平行于拋物線的對稱軸.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PA垂直于圓O所在的平面,△ABC內(nèi)接于圓O,且AB為圓O的直徑,點M為線段PB的中點.現(xiàn)有以下命題:①BC⊥PC;②OM∥平面APC;③點B到平面PAC的距離等于線段BC的長.其中真命題的個數(shù)為( ) ![]()
A.3
B.2
C.1
D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐P﹣ABC中,PA垂直于底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,則當(dāng)△AEF的面積最大時,tanθ的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面
平面
,四邊形
為菱形,四邊形
為矩形,
,
分別是
,
的中點,
,
.
(Ⅰ)求證:
平面
;
(Ⅱ)若三棱錐
的體積為
,求
的長.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,在區(qū)間(﹣∞,0)上是增函數(shù)的是( )
A.![]()
B.y=|x﹣1|
C.y=x2﹣4x+8
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com