①②④
分析:化簡(jiǎn)函數(shù)為同角同名函數(shù),利用2cos
2x-1=cos2x,sin2x+cos2x=)=

sin(2x+

).再利用正弦函數(shù)的性質(zhì),對(duì)稱軸方程x=kπ+

,k∈z;遞減區(qū)間為[2kπ+

,2kπ+

],k∈z,及函數(shù)圖象的變化規(guī)律解決.
解答:首先對(duì)函數(shù)進(jìn)行化簡(jiǎn),f(x)=2cos
2x+sin2x-1=sin2x+cos2x=

(sin2xcos

+cos2xsin

)=

sin(2x+

).
對(duì)①,令2x+

=kπ+

,得對(duì)稱軸方程x=

+

,k∈z,∴②正確;
對(duì)①,令2kπ+

<2x+

<2kπ+

,得 kπ+

<x<kπ+

,k∈z.函數(shù)的遞減區(qū)間為[kπ+

,kπ+

],k∈z,∴①√;
對(duì)③,平移的單位應(yīng)是

,∴③×.
對(duì)④,當(dāng)x∈[0,

]時(shí)f(x)單調(diào)遞增,當(dāng)x∈[

,

]時(shí)單調(diào)遞減,f(

)=

,f(

)=-1∴值域是[-1,

],∴④√.
故答案是①②④
點(diǎn)評(píng):牢記三角函數(shù)的性質(zhì)及圖象變化規(guī)律,利用整體代入求解復(fù)合函數(shù)的對(duì)稱軸、單調(diào)區(qū)間、值域是本題的關(guān)鍵.