【題目】如圖,已知拋物線
焦點(diǎn)為
,直線
經(jīng)過點(diǎn)
且與拋物線
相交于
,
兩點(diǎn)
![]()
(Ⅰ)若線段
的中點(diǎn)在直線
上,求直線
的方程;
(Ⅱ)若線段
,求直線
的方程.
【答案】(Ⅰ)
;(Ⅱ)![]()
【解析】
試題(1)設(shè)直線l的斜率為k,A(x1,y1),B(x2,y2),AB的中點(diǎn)M(x0,y0),由點(diǎn)差法,可得2y0k=4,又
,所以
。(2)設(shè)直線l的方程為x=my+1,與拋物線聯(lián)立組方程組,由弦長公式與志達(dá)定理,可求得參數(shù)m的值.
試題解析:(1)由已知得拋物線的焦點(diǎn)為F(1,0).因?yàn)榫段AB的中點(diǎn)在直線y=2上,所以直線l的斜率存在,設(shè)直線l的斜率為k,A(x1,y1),B(x2,y2),AB的中點(diǎn)M(x0,y0),
則
由
得
(y1+y2)(y1-y2)=4(x1-x2),所以2y0k=4.
又y0=2,所以k=1,故直線l的方程是y=x-1.
(2)設(shè)直線l的方程為x=my+1,與拋物線方程聯(lián)立得
消元得y2-4my-4=0,所以y1+y2=4m,y1y2=-4,Δ=16(m2+1)>0.
|AB|=
|y1-y2|=
·![]()
=
·
=4(m2+1).
所以4(m2+1)=20,解得m=±2,
所以直線l的方程是x=±2y+1,
即x±2y-1=0.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從分別寫有1,2,3,4的4張卡片中隨機(jī)抽取1張,放回后再隨機(jī)抽取1張,則抽得的第一張卡片上的數(shù)大于第二張卡片上的數(shù)的概率為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動點(diǎn)
到定點(diǎn)
和到直線
的距離之比為
,設(shè)動點(diǎn)
的軌跡為曲線
,過點(diǎn)作垂直于
軸的直線與曲線
相交于兩點(diǎn),直線
與曲線
交于
兩點(diǎn),與
相交于一點(diǎn)(交點(diǎn)位于線段
上,且與
不重合).
(1)求曲線
的方程;
(2)當(dāng)直線
與圓
相切時,四邊形
的面積是否有最大值?若有,求出其最大值及對應(yīng)的直線的方程;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
為自然對數(shù)的底數(shù),
.
(1)討論函數(shù)
的單調(diào)性,并寫出相應(yīng)的單調(diào)區(qū)間;
(2)已知
,
,若
對任意
都成立,求
的最大值;
(3)設(shè)
,若存在
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且橢圓上一點(diǎn)與橢圓的兩個焦點(diǎn)構(gòu)成的三角形周長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)直線
與橢圓
交于
,
兩點(diǎn),且以
為直徑的圓過橢圓的右頂點(diǎn)
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
中,底面
為菱形,
,
,點(diǎn)
為
的中點(diǎn).
![]()
(1)證明:
;
(2)若點(diǎn)
為線段
的中點(diǎn),平面
平面
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了推行“智慧課堂”教學(xué),某老師分別用傳統(tǒng)教學(xué)和“智慧課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進(jìn)行教學(xué)實(shí)驗(yàn),為了比較教學(xué)效果,期屮考試后,分別從兩個班級屮各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.
分?jǐn)?shù) |
|
|
|
|
|
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 | 5 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面
列聯(lián)表,并判斷“成績優(yōu)良與教學(xué)方式是否有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)良 | |||
| p>成績不優(yōu)良 | |||
總計(jì) |
附:
.
臨界值表
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采川分層扣樣的方法扣取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為
,求
的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,不正確的是( )
A.在
中,若
,則![]()
B.在銳角
中,不等式
恒成立
C.在
中,若
,
,則
必是等邊三角形
D.在
中,若
,則
必是等腰三角形
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com