欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.函數(shù)$f(x)=sin(x-\frac{π}{3})cosx$在區(qū)間$[{\frac{π}{6},\frac{π}{3}}]$上的最大值為0.

分析 使用差角公式,二倍角公式化簡f(x),根據(jù)x的范圍和正弦函數(shù)的圖象與性質(zhì)求出最大值.

解答 解:f(x)=$\frac{1}{2}$sinxcosx-$\frac{\sqrt{3}}{2}$cos2x=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x-$\frac{\sqrt{3}}{4}$=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{4}$.
∵x∈[$\frac{π}{6}$,$\frac{π}{3}$],∴2x-$\frac{π}{3}$∈[0,$\frac{π}{3}$].
∴當(dāng)2x-$\frac{π}{3}$=$\frac{π}{3}$時,f(x)取得最大值$\frac{1}{2}×\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{4}$=0.
故答案為:0.

點評 本題考查了三角函數(shù)的化簡求值,正弦函數(shù)的圖象與性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)的奇偶性
(1)f(x)=cos($\frac{1}{2}$x-$\frac{3π}{2}$);
(2)f(x)=|sinx|+cosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$的左焦點為F1,P為橢圓上的動點,M是圓${x^2}+{({y-2\sqrt{5}})^2}=1$上的動點,則|PM|+|PF1|的最大值是17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點分別為F1,F(xiàn)2,右頂點為A,上頂點為B,已知$|AB|=\frac{{\sqrt{3}}}{2}|{F_1}{F_2}|$,則C的離心率為$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{{\sqrt{3}}}{2}sin2x+\frac{1}{2}cos2x$.
(Ⅰ)求函數(shù)f(x)的最小正周期T和單調(diào)增區(qū)間;
(Ⅱ)若$x∈[0,\frac{π}{2}]$,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知sinα=$\frac{3}{5},cosα=-\frac{4}{5}$,則角α的終邊在第二象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.
從圖中任選5個序號,寫出其對應(yīng)定理或結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知$tanα=\frac{1}{3}$,求$\frac{sinα+3cosα}{sinα-cosα}$的值.
(2)求$lg25+lg4+{7^{{{log}_7}2}}+{(-9.8)^0}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=log4(4x+1)+mx為偶函數(shù),g(x)=$\frac{{{4^x}-n}}{2^x}$為奇函數(shù).
(1)求mn的值;
(2)設(shè)h(x)=f(x)+$\frac{x}{2}$,若g(x)>h(log4(2a+1))對任意x≥1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案